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DIFFERENTIAL CALCULUS.

SECTION L

DEFINITIONS AND FIRST PRINCIPLES.

(1.) In the Differential Calculus, numbers or quantities are

considered as being constant or variable ; those whose values

do not change during any investigation, whether they are

known or not, being called constants ; while those whose

values change, or are conceived to be altered, are called vai'i-

ables. Constants are generally represented by the first letters

of the alphabet, and variables by the last letters. Thus in

ax -[ h^y — ax^ + hx + c ; a,h,c are constants, and x, y are

variables.

(2.) Yariables that are entirely arbitrary, or arbitrary within

certain limits, are called independent variables; while those

variables whose values depend on the values of one or more

others that are independent of them, are called functions of

the variables, on whose values they depend. When the de

pendence of a variable on one or more others is expressed or

given, the variable is called an exj?licit function of the va-

riables on whose values it depends ; but if the manner in

which a variable depends on one or more others is neither

expressed nor known, and is to be found from the solution

„of one or more equations or in any other way, the variable

is called an implicit function of the variables on whose

values its value depends. It may be added, that a variable



2 DIFFERENTIATION OF ALGEBRAIC EXPRESSIONS.

which is expressed in variables and constants, is not consid-

ered as being a function of the constants. Thus, in y = 3j;

+ 7, y = aa; + 5, y is an explicit function of x, and x is an

implicit of y ; and neither y nor x is considered as being a

function of the figures 3, 7, or of the constants a, h.

To signify in a general way, that any variable, as y, is an

explicit function of another variable, as x, we write them in

such forms as y= F (x), y =.f{x\ y = <p{x\ ?/ = 4'ix)^ &c.,

either of which is read by saying that y is an explicit

function of x : and to show that y is an implicit function

of 03, we use such forms as P (», y) = 0, f{x, y) = 0,

y (aj, y) = 0, &c., which are read by saying that y is an im-

plicit function of x.

(3.) When a function of a variable and the variable in-

crease or decrease together, the function is sometimes called

an increasingfunction / but if the function increases when

the variable decreases, or the reverse, the function is said to

be a decreasing function. Thus, in y = aa; H- 5, y is an

increasing function of x ; and in y= _, y is a decreasing func-

tion of X.

(4.) \lx represents any arbitrary variable, which is changed

into x' ; then x'— x, the difference of the values of x (found

by subtracting the first from the second), is called (in the

Differential Calculus), the differential of x {x being the first

value of the variable), and is expressed by dx, by writing the

small letter d (the first letter in the word differential) before

or to the left of the variable x.
,

If X stands for any function of x, and the algebraic sum

of all the changes in the value of X, that result fi-om the sep-

arate variation x' — x=. dx, of each x is taken, it will equal

{what is called) the differential of X ; which is expressed by
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dK, as in the case of x. If c?X is divided by dx, tlie quotient

is called tlie differential coefficient of dx (the differential

of the independent variable x), since it is the coefficient of

dx in dX, = -y— dx. Because constants do not change their
uX

values, it is clear that the differential of a? or X when increased

or diminished by any constant, jvill be dx or dK, the same

as before. And if cb or X has a constant factor or divisor,

then dx or dX., when multiplied or divided by the constant,

will be the corresponding differential.

Thus, if X = as' = xx, then if X' represents the value of

X when either x (in xx) is changed into x', it is clear that

from the change in the first x we shall get X'= x'x, or sub-

tracting X =: XX, we get X' — X = x'x — xx = x {x' — x)
;

and from X = xx, by changing the second x into x', we shall

in like manner get X' — "K = xx' — xx = x (a;' — x)
;

consequently, from the addition of these expressions, we get

2(X'-X) = 2x{x'-x).

Because 2,x {x' — x) is clearly the whole change that can

take place in «' = xv, according to the preceding principles
;

it is clear (from the definition of the differential of a function

of a variable) that for 2 (X' — X) we must put dX. the differ-

ential of X, and since X^ — x=.dx, the preceding equation

becomes dX. = 2xdx, which expresses the differential of

X. = x^ \ and dividing by dx (the differential of the inde-

pendent variable x), we have -3— = 2a!, for the differential

coefficient of X = a;^. If X equals a;' or a;* or ... . a;", n

being a positive whole number, we shall, in like manner,

get dX = Zx'dx or 4:x'dx or ... . Ma;"-WaJ, for their differ-

entials, and -5—= Sa;' or ia;' or . . . . nx" -' for their differ-
dx

ential coefficients.



4 EXAMPLES (continued).

Similarly, if X = oa; + 5, oraV + h\ or a"a? + h", &a, we

stall get djL = ai/o; or 2a'xdx or Za"x^dx, &c., for tlieir dif-

ferentials, and -T— = a or 2a'x or Sa'V or, &c., for tlieir

differential coeflScients; and generally, m being a positive

integer, the differential and differential coefficient of X =
(Aa;"" + B) -V- C, will be exp.ressed by <^X = mKx"'-^dx -=- C,

and -T- = OTAa!"*-^ -^ C : which results clearly follow from

the consideration that A, B, C, do not change their values, or

that their differentials equal naught

"We are now prepared to find the differential of a variable,

or function of one or more variables, when it is affected by
any given exponent ; or, as is sometimes said, we are pre-

pared to find the differential of any given power or root of a

variable or function.
n

1. Let it be proposed to find the differential of X = a;"

supposing m and n to be positive integers. Since the equa-
n

tion is equivalent to X"* = a;", which is the same as (a; "^)'" = a!"

an identical equation ; by taking their differentials (according

to what has been shown), we shall clearly have »iX"'-'(S =
n(»i-l) n

nx^-^dx; consequently, since X'"-^=s: aj" =a;»"'", we shall

have <?X = - a;'"" dx, as required.

« n

2. Let X = a; ", or Xa;"'= 1, be proposed, in order to find
n

dK, the differential of X = a; "
, supposing as before m and

n

,«j to be any positive integers. Because Xa;'" = 1, is essen-
n n

tially the same as the identical equation x "* as"* = 1, it is clear

that the differential of Xa?*" must equal naught, since the dif-

ferential of its equivalent, ] , equals naught
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It is clear (from the nature of a differential), that ia find-

ing the differential of X*", we may take the differential of

each factor regarding the other as constant, and add the

results for the whole differential ; consequently we shall have

- ^ n n ---i
X6Za3"' + a!'"(ZX. =0, or^= — — Xa!-Wa)=—— » "• dx,

as required.

3. If X = (a ' ± a; ' ) "', we shall clearly, as before,

have«X — ± — -
( a « + a; ? ) as « &, for its differ-m q\ I

ential.

4. Hence, the differential of any given power, or root of a

variable or function, can be found by the following

RULE.

Multiply the poxver or root iy its index, subtract 1 or

unity from the index, in the product ; then, multiply the

result hy the differential of the variable orfionction, for the

required differential.

EXAMPLES.

1. To find the differentials of x" and («"')".

Here we have the variable x raised to the 5th power, and

the function a?" raised to the nth power, the indices of the

powers being 5 and n ; consequently, by the rule, we shall

have 53?-^dx = bai^dx and
:

n (a;"')"-Wa!"' = nas"""-"' x mx^-'^dx = mnx"'''-'^dx

for their differentials : noticing, that the second differential

is manifestly correct, since (as"')" = a;™".

2. To find the differentials of \/x = x- and \/a? = x.

Here ^ and f are the radices, and by the rule we shall have



6 EXAMPLES (continued),

2 1 2 1
di^x^ = - 3

—

dx =5 —T-dx: for the differentials.
3 yx o ^i

3. The differentials of 7y' and os", are i2y^dyaud 33 ds;

which are obtained by multiplying the differentials of y' and

£', by their coefficients 7 and 5, as we clearly ought to do.

4. The differentials of ax"" ± b and -r a;" ± e, are

7naaf-^dx and -j-x"-^dx,

which are clearly correct, since the constants connected with

the variable parts by ±, must clearly disappear when the

differentials are taken, and that the differentials of oof" and

jx" must evidently be a and j times the differentials of a?"

and ic".

5. The differentials of 2 V(a= + x") =2 {a" + x'f, and

|v'(«- + a;') = I (a^ + a?f, are 2 («^ + a^Y^xdx -.

'^^^^

and ^ (a^ + aF) ~*xdx = r

6. The differentials of {d' + aP)-^ and (a° — »)"', are

— 4 (a^ + ar)~^xdx and 6 (a^ — a?)-*^xdx.

7. The differentials of (a= + 3a?)-'' and («^ — 3a;-)~^, are

- 42 {a'+ Sx-y'xdx = -
, ,, ^ „ ,,8 and
(«^ + 3a>^)« («^-3^.=)^'.*'

8. The differentials of {a- + x-^)-^ and {a^—ar^)-", are

4aj~'<7a5 _ 4x?dx , 4a3^<ZEB

(1? +^=^' " p^+I/' ~(^^ If

9. The differentials of (2^ + S-Jf and {2y^ — Sarf, are

(4y3 ^ 6j^) (4^^^ ^ 6_j,^a,) an<i 2 (2y' — Sx') {iydy — 6xdx).
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(5.) IfX is a fanction of any number of variaHes that are

independent of each other, it is customary to call the differ-

ential ofX taken with respect to any one of the independent

varial>les, a partial differential ofX, and the corresponding

differential coefficient is also called a partial differential co-

efficient ; and the algebraic sum of all the partial differen-

tials of X, is called its total differential.

If X has two or more terms that are functions of the same

variable, it is clear that we may find the differentials of such

terms as before, and then take the algebraic sum of the dif-

ferentials for the differential of the sum of such terms.

Thus, ifX is a function of aj, y, s, &c., we shall have -^ dx,

--j—dy, -j-dz^ &c., for the partial differentials of X, whose

sum gives dX. = —^

—

dx + —^

—

dy H

—

-t—»3 +, &c. ; for the

complete or total differential of X ; and -j- , -r-- , --7— , &c.,

are the partial differential coefficients. And if we have

X = Zax^ — bx + c, by taking the differentials of its terms

separately we shall have 6axdx and — bdx for the partial dif-

ferentials, whose sum gives <fX= Qaxdx — bdx = {6ax — b)dx

for the complete or total differential of the proposed expres-

sion ; and, of course, —.— = 6ax = 5 is the corresponding

differential coefficient.

Eemaeks.—1. If X is a function of a single variable, its

differential coefficient is sometimes indicated by writing the

capital D before or to the left of X: thus, DX signifies

that the differential coefficient of X is to be taken ; as in
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D (dz' —I)x + c) = 3aa?— i, called the first derived fanction

of aa^ — hx + c. And if X is a function of x, y, &c., the

partial differential coefficients -4—, -5—, &c., are sometimes

expressed by the forms D^X, Dj,X, &c.

2. To indicate that the differential of a componnd quan-

tity is to be taken, we put it under a vinculum or inclose it

in a parenthesis, to which we prefix d. or d (called the char-

acteristic of differentials), and when the differential has been

found, the quantity is said to have been differentiated. Thus

d.{x^+y^ — as) ov d (a? + y^ — as) indicates the differential

of ar* + 2/^ — as, which being taken, gives d (a? + y^ — as) =
2xdx + 2ydy — ads.

To make what has been done more evident, take the fol-

lowing

EXAMPLES.

1. To find the differential and differential coefficients of

X = 32!^- 5/ + 93'.

Here dX = 6xdx — lOydy + 27s^d3 ; and^ = 6x,

-y- = — lOw, and^—= 27s^, are the differential coefficients.
ay as

2. Perform what is expressed hj d{ Va? — 2y^ + as) and

^ (a^ - ar" + ce - 3/ -'df + 7).

mi ^fl^ —2ydy
,

, ,

The answers are ,, ,—s—̂ + ^2, and

Za?dx — 2xdx + dx — Vly^dy + 27y"-dy ;

and the partial differential coefficients are
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3. Perform what is indicated by

Dy {^ — 3y') and Jixy (aai^—'t^ + s).

Ans. — 15y^ 4aa;^, and — 5/ ; when Dx,y is used to indi-

cate the differential coefficients with reference to x and y.

4. To find the diiJerential of the product of any number

of factors, as X, Y, Z, &c.; which may (if required) be func-

tions of any variables.

Here it is easy to perceive (from the nature of differen-

tials) that d(KY) = X.dY + YdK,

d (XYZ) = :KXd3 +XZdY + YZd:K, &c.,

which are of like forms, are the sought answers.

(6.) It clearly follows from the preceding example, that the

differential of a product can be found by the following

RULE.

The differential of the product of any number of variables

or functions, equals the {algebraic) sum of the differentials,

that resultfrom the differential of each factor multiplied

h/ the product of all the rem>ainingfactors.

ESAMPLES.

1. The differentials of xy and Zx'y, are xdy + ydx and

3 {x'dy + 2yxdde) = ix^dy + Qyxdx.

2. The differentials of xn? and arV, equal

2x"dx + xhlx = Soff'dx, and ixVdx + SxVdx = Ix^dx
;

which are clearly the same as the differentials of ar' and aj\ as

they ought to be.

3. The differential of (^ + f) {a? — y% is

(a^ + f) (2a3^iK - ^dy) + {3? - f) (2xdx + 2ydy)

= 4 (fi'dx — y'dy).
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4. The differentials of y'(a- + a?) y. \/{a^—ar), and 2x*£»*

are

xdx ,, , „, xdx
Va- + a? X ==^ + i/{"^ — a*") x

Va- -f- u?

1i?dx

and 5a3*aj^ dx + Saj^as-ffe = Sar'Jj?.

5. The differentials of «a;yV and -ary-^z-', are

a i^xy'i-dz + Ix^ydy + yVc^a?)

and ^ (- dx'y-^zr^dz - Ix^sr^y^dy + 2ir=3-=a!<?4

6. The differentials of - —xy~'^ and -, = a^y-', are

, a; o 7 , ,7 V^2! — a;<7y

y ^ ^ y y2

a*
and <?-'—3- = 2xy-^dx— ^x^y~*dy.

Eemark.—If we put X — '-, we shall have Xy = x,

whose differential gives ^dy + y<^X = dx] or, since

X = -, we have '— dy + yd ~ = dx; consequently, we shall

have ^ —= —
s , which is the same as found

y ¥
from a;y~\

(7.) It follows from the preceding example and the re-

mark, that the differential of a fraction can be found from

the following

EULE.

Multiply the denominator hy the differential of the nv^

merator, and from theproduct subtract the numerator mid-
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tiplied hy the differential of the denominator, and divide

the remainder hy the square of the denominator,

EXAMPLES.

1. The differentials of^— and—5- are
X or

2x^dx — x^dx 3?dx , , x'dx — lx^dx dx
-^ -^^r =d«> and -, =-^,

wMcli are clearly correct ; since the form

x '

a?

2. The differentials of (-) and—-, are

"-1 /^v 'xv^-^ydx — xdy
n
\y) \yl ~\y)

and
ny"^af^^dx — rnx^y"^^d,y

3. TTie differentials of^^and^J, are^^^^Zll^
x+y a?+y^' {x+yf

T , (ydx — xdii)
and ixy ^-

, .
,

„/•.

vz 6t" -\' x^ a^
4. The differentials of — and of — = -r ± 1, are

X a?" 85"

xjj/dz + zdy)- yidx_
^^^ ^ ^^^„ ^ «,n)-(a"± «") daf =

a'^dx" ruC'x'^hJx na'^dx ,ft" ,, „ „.

5. The differentials of' and , are —
a -\- X a — as' (» + «)'

T
adx

and
7

r;.
(a — xf
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6. The differentials of—rr-; jr = '

-r and

X X
are

V(a=-a3=) (-^i! _ j^-^V

dx 3?dx • c^dx - c^dx
and

i^{c? — x") |/(a^- xj -/(«^ - a?f \/{a? — x'f

7. The differential of —-p-^ 5 is
-/(a^ + ar) + x

( xdx
,

, \

W(a+ar) /^/(a^+ar') /_ a(fo

[ 4/(a-+ a;^) + a^P a^ + »" + a!|/(a2 + aj=)

afifa;

noticinet, that we shall in like manner get -s- „ -
-r-i, tt

for the differential of —,—5 =r .

i^\(r + ar) — a?

(8.) Supposing X to be a function of x alone, taken for

the independent variable ; then, since <^X, from its definition,

Bquals the sum of all the changes or variations in X, that

•result from the separate change or variation x'—x=^dxol
each X in X, it clearly follows that the differential coefficient

-— must be independent of dx\ and that a double, triple,

&C., value of dZX must result from a double, triple, &c., value

of dx^ and so on ; and it is clear that the reverse is also true.

It is hence evident that we may, according to custom, sup-

pose dx in <?X or in (ZX in the differential coefficient -^ to
(tx

be unlimitedly small, and that when x is the independent

variable, dx ought to be regarded as constant or invariable,

for otherwise x must be regarded as a function of a variable,

and of course it can not be the independent variable.
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It is further evident tliat for dX. = -j— dx, we may, if

required, write dX = -5— h, and regard A as being finite

;

noticing, that it will generally be very convenient to regard

dX. in the differential coefficient -j— as unlimitedly small, on
ctsc

account of the minuteness ofdx.

Calling dX. the first differential- of X, and -=— its ^si
ass

differential coefficient / then, if ^X or —^ contains x, and

we take the differential of dX, supposing dx constant, or x to

be the independent variable, we shall get d (dX), which we

shall represent by dJ'X, and it will be what is called the

dX d^X
second differential of X ; and d -^—~dx=^ -j—, , which is

dJ'X
the same as d-X -f- da? — -5-,, will be what is called the sec-

ond differential coefficient of X.

d^X
In like manner, since --^^ is clearly iadependent of dx, if

it contains x, we shall, as before, get d{d^X) = d^X for the

d (d^X) d^X
third differential of X, and , .^

-^dx = -^ , which is

(?X
clearly the same as d^X -i- c?ar'= -^-g, will clearly be what is

called the third differential coefficient of X.

And we may in the same way proceed to find ^*X, d'^X . .

d^X, which are called the fourth, fifth to the wth differ-

d'^X
ential ; and the corresponding differential coefficients, —r-j-,

-j-^ -T-^. Thus, from X = a;" we get <QC= ««"-*(&,
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d?X = n (w-1) x'^-d^, cPX = n («-l) (n-2) a;"-^^, &a,
TV"

for the first, second, third, &c, differentials; and-^=na3"~',

^ = n (n-1) »"-=,^ = w (w- 1) (« - 2) a;"-', &c., wiU be

the corresponding differential coefficients of «".

If we put x'— x= h, or x' := x + h, and change a; in X
into x' ; then, if the resulting value of X is expressed by X',

it is manifest that X' is a-function of x' or its equal x + h.

If X' is developed into a series arranged according to the

ascending powers of A, it is evident (from what has been

done) that X and -r- h will be the first and second terms of
ax

the series, so that we shall have X' = X + ^-A +, &c.

Since x may stand for any variable, and X for any func-

tion of it, it results from the preceding equation, that we can

find the first differential of the function by the following

EULE.

Change x in the function into x+ h, and develop the

resulting function into a series an-anged according to the

ascending powers of h ; then the coefficient of h (the simple

power of A) in the development, will equal -j- the first dif-

ferential coefficient, which multiplied by dx (supposed unlim-

itedly small) gives -5— dx ; which is the first differential of

the function X.

Thus, if we put X = i^, we get

X' = (a; + A)^ = a^ + 3a!=A + 3a;A^ + A^

consequently, Zi? = the first differential coefficient, and of

course da? = Za?dx is the first differential



EXAMPLES IN HIGHER ORDERS OF DIFFERENTIALS. 15

m
Similarly, from X = a? " we get

X' = (£B + A)" = 0!" + -7 a;" A +, &c.,

as is clear from the Binomial Theorem.

. m --1
Hence, smce —a;" is the coefficient of the simple

power of A, in the expansion ; it follows that we shall have

"H m ™—

1

rfa3" = — £»" (fe for the differential.
n

m
Eemark.—The same differentials of «? and a?", can be ob-

tained immediately from the rule at page 5.

(9.) We will now show how to find the remaining terms of

the series, X' = X + -7- A+ , &c.
ax

Thus, by taking the differential of y-A, supposing x

alone to vary, we have, according to the principles hereto-

fore given, -^prhh = -f-^^i-', for twice the third term of the

series. For any term in -5-5- AA, that results from the multi-

plication of terms containing A and A taken in any order,

will clearly result from the same terms when A and A are

interchanged, as is manifest from the manner of obtaining

-r-:r AA : Consequently, —,——^ is the third term of the series.
dx' •" dx 1.2

Similarly, from -^-5 ^o '^^ S®* -3-3- ^-5 for thrice the fourth

term of the series.

^ . . .X. . . . d'XK'h ,. , ,, „
For it IS plain that any term m -5-j- —^, that results from

the multiplication of a term that contains A^ by another that



16 tayloh's theorem.

contains A, will equally result in two other ways, since /r can

be formed in two other ways, by combining each h in the first

cFS. It? -L

/i' with the remaining A ; consequently, -tt- -.-q-q is the fourth

term of the series.

<^''X A*
It is hence easy to perceive that -r-^ \ o c>a.

^ ^^^ ^^^

term of the series, and so on.

For a more full explanation of the principles used in find-

ing the preceding terms, we shall refer to the solution of

Example 16, at p. 56 of my Algebra, and for the common

way of finding them, see p. 252 (49.), of the same work :

observing, that this method is altogether more complicated

than the preceding.

Hence, collecting the terms, we shall have

^, ^ ,
<fX - (^=X A= ^X A' , .

,

whose law of contiuuatioa is manifest : noticing, that A may
be positive or negative, according to the nature of the case.

Because X' is the same function of a; + A that X is of a;,

it follows, if we represent X by f{x) = any function of x,

that X' will become a sLmLlar function of a; + A, represented

hjfix + h) ; consequently, the series (a) becomes

f(x+h\-m+^^h + '^^^'\^'-^'''^ ^' +&c (a'\j(x+h)-j-\x)^
efe

^ + ^^i:2+~^"r2":3+''^''-^''>

(«) and {a') are different forms of what is called Taylor's

Theoj'em^ which is always true when x and A are undeter-

mined quantities, or when the series does not contain any

fi-actional or negative powers of A. When particular values

are assigned to x and A, the series afe also true, provided that

no term becomes infinite ; but if one or more tenns become
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infinite, the series are true no further than to their first in

finite terms, exclusively.

If we represent the particular values of X, —j-, -y-j, &c.,

that correspond to a? = 0, by (X), \—t-\ ("j-3 ji &c i ^'^^

if we change h into 05, and represent the corresponding value

of X' by X, {a) will become

^=(^)+ U) ^ + W) 12 + te) 12:3 +' ^°-
• • •

(^)'

which is called Maclaurin's Theorem ; in which x may be

positive or negative, according to the nature of the case.

Because X is supposed to be a finite function of x, it clearly

follows, if (5) gives an infinite value to any term of X, that

(5) is not applicable to the expansion of X.

To perceive the uses of Taylor's and Maclaurin's Theo-

rems, take the following

EXAMPLES.

1. To expand {x + hy, by Taylor's Theorem.

Here (x + hf and «* must be used for X' and X ; which

oiyeX-^ ^-4^^ ^-12x^ ^^ -24x ^'^-2i

and thence (a) becomes

{x + Kf = x^ + ^3?h + 6«Vi= + 4»A= + A*.

2. To expand {x + A)", according to the ascending powers

of A, by Taylor's Theorem.

Here X' = (« + A)", X = «",^ A = nx'^-'^h,

<^X A^ _ n(n-l)
dsi? 1.2 ~ 1.2 '^ ^''
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<^.JL- ^(n-l)(n-2)
.

dx' 1.2.3
~

1.2.3
'^'*°-'

consequently, from (a) we have {x + A)" =

3. To expand X = (a + xf, according to tlie ascending

powers of x, by Maclaurin's Theorem.

Here X = (a + a?)' gives

consequently, putting a; = in these, we get

,„. 3 (dX\ - , /d'X\ . '^X „

and thence, from (A) we have

(a+ xf = a' + 3a^x + Sax' + x\

as required.

4. To expand
:j

^ (1 + a;)-^ according to the ascend-

ing powers of x, by Maclaurin's Theorem.

Since X = (1 + x)"^, we have

and so on ; consequently, by putting x = in these, we

have

and so on. From the substitution of the preceding values

in {h), we get

— l—x + a^ — x' +, &c.,
1+2!

for the required expansion.



EXAMPLES (continued), 19

5. To expand —r^ r, according to the ascending powers

of X, by Maclaurin's Theorem.

Because x = reduces —- to -:r = infinity, it would

seem that Q>) is not applicable to the question. Nevertheless,

since (b) gives

—- = 1 + tc + aj^ + as' +, &c.,
J. — no

we shall of course have

= x-^ + 1 + X + aP + x' +, &c.,
x{l — x)

as required.

6. To expand X = - = ax-'" into a series, arranged

according to the ascending powers of x, by Maclaurin's

Theorem.

Since -t— = — «aa3~"~S -y-^ = « (« + 1) x-^-^, &c., «

being positive ; and since these are infinite when a? = 0, it is

clear that (b) is not applicable to the question.

7. To expand X' by (a) on Taylor's Theorem.

Here, by (a) we have

X' = {x +hY + (a? + /* - a)-= andX = £»« + (»- «)-»

;

and putting a; — a, these equations become

X' ::^ (a + A)' + A-' =: (a+ A)'+-^, and X = a' + ^.

It is hence clear that (a) is not applicable to the question

any further than to the expansion of {a + Jif.

Eemaeks.—It is manifest from what has been done, that

X' = {a +hf + A-= = a^ + A-= +Za^h + 3a/i= +A=
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is the true expansion of tlie proposed expression, wten

x = a. And it is clear that the existence of A-^in the

expansion, is the true reason why it can not be found by

Taylor's Theorem; since it (the Theorem) evidently 'sup-

poses the indices of h not only to be integral, but to be pos-

itive.

8. To expand {x + Kf + \_{x + hf — a^]* according to the

ascending powers of A, when x—a, by Taylor's Theorem.

Here we have

-K'^{x + Iif + \{x+Kf-d?f,

X = ar" + (cc^ - dF)^,

^ = 2x + Zx{a?-ai',

i?^ = 2 + 3 (ar' - a=)* +3a!= (»= - a')"*
aar

Because x' — a? with a fractional index enters the denomi-

nator of one of the fractional terms of the value of -j-^, it

clearly follows that x^ — a^ with fractional indices must enter

clFX. <^*X
as divisors, in fractionsil terms of the values oi -j-^, -j-^,

and so on ; and it is manifest that like conclusions must hold

good in all similar cases.

The substitution of the values of X, -7-^, &c.,in («), gives

{x + JCf + [(a, + Kf -a^^^x" + {9?- d^^ +

\2x+Zx{a?~a^f} A+(2 + 3(a^=-a^)^ +r!^^ ^+ M,
for the expansion ; when no particular value is assigned to x.
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When x = a, the expansion is easily reduced to

{j,+ kf+ [{x+hf-a']" = a' +2ah + h'+ -£^, which

is true in its first three terms, but not in its fourth term,

which is infinite.

To find the true expansion when aj = a, we put a for x in

(« i hy+[{x + kf—a^y, and thence, by a simple reduction,

get {a + hf + {2ah + h')' ; which expanded by the Bino-

mial Theorem, or in any other way, gives

{a + hf + {2ah + A')^

= a" + 2ah + {2ahf + /i' + S^^/fi + , &c.,

for the true expansion,

Eemaees.—From this and the preceding example, we per-

ceive how the correct expansion may be found when h is

affected with a fractional or negative exponent, in conse-

quence of assigning a particular value to x ; which are gen-

erally said to fa,U under the failing cases in the applications

of Taylor's Theorem : noticing that the Theorem is clearly

not applicable in such cases, because it supposes the indices

of A in the expansion, to be positive iategers.

(10.) If X is a function of any number of variables, as

X, y, s, &c.; then, if x, y, &c., are changed successively into

X -{- h, y -\- i, z + h, &c., the resulting values of X may be

expanded into series arranged according to the ascending

positive and integral powers of A, i, k, &c., and their prod-

ucts, provided no particular values are assigned to s», y, s, &c.

For let X' denote the value ofX that results from changing

X into x + h; then {a) p. 16, will be the expansion. In like

.. . ^ dX . d'X A' . . . , .

manner, ii y m A, -r- n, j-^ ^y i
<*c-) ^s changed mto
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y + 1, and the resulting values of X, —j- A, &c., are ex-

panded according to tte ascending powers of «', as in {a)
;

then, if X" stands for the resulting value of X', when y is

changed into y + ?', we shall have

X" =X :+-

rfX , rf=X 7i= cZ'X A'

dx

dX
dy

da? 1.2

* + -3—7-Tr-(-

<^a^ 1.2.3

^^X h? i^

dxdy i 1 ' dxhly 1.2 1

<?X i= (f'X , r
"^

1:2
'^'

o5^^ 1.2
+

dxdy^

d^X
+ ,&c.

...(a")

dy' 1.2.3

If we had at first changed y in X into y + ?', and then

expanded as in (a), by arranging the terms according to the

ascending powers of i ; then, by changing x into a; + A in

the terms
„ dX . d'X ?

,,

df 1.2'
*°-'

we should in a similar way have obtained the same expan-

sion under another form. Thus, we have

dX d?X i' di^X i' ^ ..

^ -^ + rfi7* + ^r2+^r2:3 +''^''-

^A+ -^ 'A —— —
cte dydx dy^dx 1.2 ' '

*"
a'*^ 1.2

"^
dyd!^

d'X . A= .

5 * 1.2'^'

+
d'X

da? 1.2.3
+ ,&c.

(«'")

Because the preceding values of X" ought clearly to be

identical, we must have the equations
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cPX d'X oPX d'X cPX (PX

dxdy dijd£ dd?dy dydx ' dxdy^ dy'dx''

dx'^dy" dy"dx"'

'

whicli show the differentials indicated in the first and second

members of these equations to be identical, as they clearly

ought to be, fi'om the nature of the differential calculus.

Changing s into z+Jc either in (as") or {a'"), and then pro-

ceeding as before, we shall get the expansion that results

from changing «, y, z into a + A, y + i, and s + Jc; and we

may proceed in like manner with reference to any number

of independent variables that may be contained in X ; and

the final result -will clearly be a generalization of {a) or

Taylor's Theorem.

If for h we put dx, (a) becomes

X' = x + dX+~+^^+,&c K);

which, according to the preceding generalization of (a), is

true when X is a function of any number of independent

variables, and that whether the differentials are taken rela-

tively to all the variables, or not

EXAMPLES.

1. Given X = a;', to find its differentials

:

Here,

X = a;", and X' = {x + dxf = a^ + Sardx + Bxdx? + da?;

consequently, since

X' = X + (£K + p^+,&c.,

we have



X = 03* cCX=—,, d=X = i,
c^'X= —V,

24 EXAMPLES.

X + cZX + f4 + iAr^ = a^ + 3a!=cfo + Sajdar" + M,

•wliicli must clearly be an identical equation.

Hence, from a comparison of like terms, we get

X= a^, (£S = 3iB'(fo;, d-X = 1.2.3awte = 6a^, (^X = 6c?a?',

as required.

2. To find tlie differentials of X = a;*.

Since X'=X + c£S+ ^ +, &c.,

= (. + cfo,)* = .* + 2^-3-, + ^-^-,&c.;

consequently, from a comparison of like terms, we have

dx _„ d^ „„ 3(&?
:
—-^ a A. = j^,

(X A.— —T-

2a!* ^ 4a!' 8a!*

and so on, indefinitely.

3. To find the differentials of X= a!y.

Since X' = X + cCK +^ = (a! + cfo) . (y + dy)

= ajy i- ySx + xdy + cfoit^y,

an identical equation : its like terms equated, give

X = a!y, cCK= ydx + ast^y, and t^X= 'idxdy^

as required.

4 To find the differentials of X = xy\

From X'= X + CZX+g + ^^^ {x + dx).{:y + dyf

= ajy^ + Ixydy + y^cte + a%Zy^ + 2ydxdy + (forcZy^,

we readily get

X = a;y', cDC — 2xydy + y'cfe,

tZ=X = 2xdy^ + 4y«Z2x^y, tf^X= Wxdy\
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Again, if we put x and y in (a") eacli equal to naught,

and represent the corresponding values of

then changing h and i into x and y, (a") becomes

„ ,„, /dX.\ /cPX\ ar"

/dX\ /cl-X\
(5');

which is Maclaurin's Theorem extended to the expansion of

a function of two independent variables : and it is easy to

perceive how Maclaurin's Theorem may be extended to the

expansion of a function of any number of independent

variables.

To illustrate (5'), we will apply it to the expansion of

X- (ax + lyf.

:25sf = 0,&c.;

and ^^.= 2a5,^= 2aJ.
dxdy ' dydx

Putting a?= and y = in X and these values, we get

also. (f)=o,(2)=^»>,S\dyy

(—

V

\dxdy)

df
: 0, &C.

;

: 2ct5.
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Substituting these values in (&'), we get

X = (aa, + lyf =^ + labxy +^ =0^0?+2abxy+Vf

;

whicli is e-ndently correct

Eemaeks.—1. 11 ax + by is elinunatedfrom tlie equations

-r- = 2a (ax + hy) and -5- = 2J {ax + Jy),

,
dX ,(£X

weget a^-&^=0,

which is called an equation of partial differences ; but, since

-J- and -^ are differential coefficients, it is clearly more cor-

rect to call it an equation of partial differential coefficients.

2. If X = fiflx -f iy) = some function of ace + Jy, it is

TT7- rTV
easy to perceive that -5- and -5- will be of the forms

dX. df(ax + ly) „ , , , .

, cDC df(asB + 5y) , „, , ^ .

It is easy to perceive that the elimination oif{ax + hy)

from these equations, gives the equation a-^ J— =0, the

same as in 1, so that it does not depend on the form ofy.
Eeciprocally, if in any calculation we meet with an equa-

tion of the form <" t-^— i-r- = Qi it may clearly be supposed

to have been derived from an equation of the form

X =f{ax + iy) = an arbitrary function of ax + iy.



DIFFEBBNTIATIONS OF XY. 27

3. If a = h, the preceding equation gives -=— = -j- ; con-

sequently, if X =/(x -\-y) — a function of a; + y, itfollows

that the partial differential coefficients, when taken sepa-

rately with reference to x a/nd' y, must equal each other.

For more ample details relatively to the preceding remarks,

&c., we shall refer to Art. 77, &c., p. 230, voL 1, of the

"Calcul Differentiel et Integral," of Lacroix.

(11.) If X and Y represent functions of any number of

independent variables, whether the variables in X and Y are

the same or not ; then, we propose to show how to find any

differential of the product XY.
Thus, by indicating and taking the differentials of XY in

succession, we get

d (XY) = X(fy + YcZX,

^ (XY) = XcZ^Y + 2cZXcrr + Yc^^X,

d' (XY) = X(^'Y + Sc^Xd^'Y + Z^ILdX + cPXY, ... to

d^ (XY) = XcZ"Y + ndK.d''-^Y +
""^""-^

^ c^^X—^Y +

^S^-^)^-"^) <fX(£"-sY+, &c . . . (c);

where it is clear that n denotes an integer, such that the wth

differential of the product, indicated by cf'(XY) in the first

member of the equation, is developed in the second member,

and of course the equation must be considered as being an

identical equation..

It is clear that {c) can be obtained immediately, from the

development of {dY + dX.)" according to the descending

powers of dY and the ascending powers of c?X, by the

Binomial Theorem ; being particular, in the development, to

apply the exponents of the powers of dY and c^X to the
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characteristic d, and to write Y for dPY, and X for d°X. (See

jirt 91, p. 256, VoL 1, of the "Calcul Differentiel," &c., of

Lacroix.)

Remaeks.—1. It is clear that the differentials of the quo-

tient = = XY~' may be found in much the same way as

before, by changing Y into Y-\
2. If dX, dY, dZ, &c., stand for the dififerentials of any

number of functions, X, Y, Z, &c ; then the differential of

the product indicated by cf(XYZ, &c.), will be obtained from

the power (dX. + dY +dZ+, &c.)" in a way similar to that

of obtaining the differential indicated by d"(YX.) from

{dY + dX.y, as explained above. For ftirther information

on what has been done, see Lacroix and "Theorie Analytique

des Probabilites " of Laplace.

To illustrate what has been done, take the following

EXAMPLES.

1. To find the differential of XY, indicated by d%XY).

Here, by putting 3 for n in (c), we immediately get

c^XXY) = XcPY + SdKd'Y + Sd^dY + cfXY

:

which can also be found from

(dY + dXf= {dYf + SidYfdX + 3dY{dS.y + {dKf,

as has been stated ; noticing that for (dYy = 1 x {dYf, we
ought to write [since (dXf= 1] {dXy{dYy, and for {dXf,

we must also write {dXf{dYy.

For, . by _ changing {crXy{dYy into XcPY, and 3(«^Y/c^X

into 8drYdX, and so on, we shall, as before, get

d^{XY) = Xd^Y + BdXxPY + Bd'XdY + cS'XY.

2. To develop cf(ary), by means of the preceding for-

mula.
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By the substitutioa of a? for X, and y°- for Y, it imme-

diately clianges into

d?{a?y^) = ISx^dxdif + ZQxy{dxfdy + &y\dxf,

since x'd{dyf = 0, on account of the supposed constancy of

dy, y being regarded as an independent variable.

3. To find the second differential of -^^ or to expand

cP(XY-0, when X = as^vand Y = y.

Here, since ci^(XY-i) = Xri^Y-') + 2c?Xc^(Y-i) + cV-^Y-\

by putting o? for X and y for Y, and performing the indi-

cated differentiation, we get

drix^y-'^) — Ix^y-^di^ — ^xif-'^dxdy + 'iy-^dx?

2xMy^ 4:xdxdy 2d«?

~ f f y
'

(12.) If 2/ = /"(s) and s — fix), we now propose to show

how to find the differential coef&cient of y regarded as a

function of x.

Here we clearlv have du = ., dz, and dz = -~- dx

,

^ dz ^ db '

and consequently, by substituting the value of dz from the

, . , . dy df{z) df'ix) . -

which gives
-f-
= ^-^ X ^^^ ; as reqmred.

diJO CC3' CtjG

It is easy to perceive that if y ^=f{z), 3 = 41 (v), v = ip (x),

we shall in like manner get

'^y-
dz ^ dv ^ dx

'''''

or
di^df{£^^d^^^d^
dx dz do dx ^ '

'

and so on, to any extent.
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EXAMPLES.

1. Given y = 3s\ s— 4.73', to find the differential of y or

its differential coefficient, regarding it as a function of x,

Here, from dy = Gsds and ds = 11a?dx, we get by sub-

stitution, dy = 723!ii?dx, or -^ = 7230?.

2. Given y = as', z = ii^, and v = ca?*, to find dy, or its

differential coefficient regarded as a function of x.

Here, we Have dy = 2a3d3, dz = Sbv^dv, and dv = iox^dx
;

consequently, by substitution, as in {d), we shall have

dy = 24:ahczw^si?dx, or -j- = ^^abczv'-a?.

3. To -simplify the differential of y = {aa? + 1)0? + of or

its differential coefficient, by putting z = aa? + ba? + c, which

reduces the proposed equation to y = z\

Here, from y = z* we have dy = 43-^3, and from

z = ax^ + ix' + e we have dz = Sax^dx + 2hxdx ; conse-

quently, from the substitution of dz, we have

dy = 43' X {^ax'dx + 2hxdx),

or ^£=4.{aa? + hii? + cfx {Zax? + 2lx)

;

which is the same result that the immediate differentiation

of the proposed equation will give.

Eemakks.—1. Thus we perceive how we may often sim-

plify the differentials or differential coefficients of compli-

cated expressions.

2. If we have y —f{u z), such that we have u=^<p{x)

and z^^tpix); then, we shall clearly have

di/ = -^—i du + -^\—i dz,
•^ du dz

, , drt>(x)
, ,

d^{x) Jand du = .\
'
dx, dz = . - ax,
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which are clearly the same as

dy =: -i~ du +— dz, and du = -,— dx, ds = ^r- dx.
"^ du, dz dx dx

Hence, eliminating du and dz from dy, it will become

, dy du , dy ds ,dy= -~ . -^ dx + -r . -^ dx,
' du dx dz dx

dy dy du dy dz

dx du ' dx dz ' dx'

In much the same way, if we have

y = /{i, •", «, &c.), t = F(a3), V = i){x), 3= f{x), &c.

;

then, as before, we shall clearly have

dy dy dt dy dv dy dz , ,

.

dx dt ' dx dv ' dx dz' dx '

It is easy to perceive that we may use (e) to simplify the

dififerentiation of complicated functions, in a way very anal-

ogous to that of {d).

Thus, to find the differential or differential coefficients of

we put u = i^{a? + a?), z = ^/(a^— a?), and thence get

y = /^[u — z). And

du — dz , xdx , , xdx
du = -^—

;

r, du =—--r-^ r , and dz =
2 i/(w- s)' i/ia"+ X,)

'

^/{a'- x') I

consequently, substituting the values of du and dz, and

restoring the values of u and z in \/{u — ,s), we have

''y = Iiv^) + 17(^) c^(«^+^)- ^('^^+«^»"''

xdx xdx

dy^^ Vja' + a^) Vja'-i^
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the same that the immediate differentiation of the proposed

equation will give. ^

(13.) Supposing two or more variables to be connected by

any equation, or that each of the variables is (in virtue of

the equation) an implicit function of all the rest ; then, it is

proposed to show how to find the differential equation that

exists among the variables ; and the differential coefficients

that result fi^om considering either of the variables as being a

function of each of the others.

1. Let X =/''{x, y) = 0, stand for any equation between

X and y ; then, since X may clearly be treated as being an

explicit function of x and y considered as being independent

variables, we shall have
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Thus, if X = y — 3a5 we liave

dK dy ^ , dK „

dy di/
~~

^ dx ~ '

wliicla reduce the first of the preceding equations to

-T- = ^ and the second to ~- = 3. It is easy to perceive

that the equation y — Sa? = or y = Sa;, immediately gives '

dx 1 ^y _ o

dy ~~ 3 dx ~ '

the same as before, and found in a touch more simple

manner.

Similarly, from X = a;^ + y^ — r' = we get

dK _
dy

~

consequently, we have

2y and -5- = 2a!

:
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between x and s,
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11 and 12, and clearly results from the nature of tJie

case.

Hence, we deduce the following conclusions

:

1. The nUii. differential of an explicit function of any
numier of independent variables, is either equal to the sum

of tertns, that contain n dimensions of the differentials of

the independent variables, or it is equal to naught.

Thus, if y= —, and x is the independent variable, we

have dy=^^,d'y = ?^^, d'y = 0,d'y = 0; all thedif-
0/ Qj

ferentials above the second being equal to naught, since x

oeing the independent variable dx is constant or invariable.

2. The ?ith differential of an implicit function of any

number of independent variables mixed together, must be

such that there shall be n differentials in each of its terms.

Thus, from yx = a', regarding y and x as functions of

other variables ; we have
ydx + xdy = 0,

xd^y + 2dxdy + yd''x = 0,

xcPy + Bdxd^y + Sd^xdy + d^xy = 0,

and so on, as at page 27.

If we proceed in like manner with the equation

f + 0^— r^^O,

we get 2ydy + 2xdx =
(for which we may put ydy + xdx = 0),

yd'y + dy^ + xd^x + di? = 0,

yd^y + Zdyd^y + Zdxd'^x + xd?x = 0,

and so on.

If X is taken for the independent variable, or if <& is con-

stant or invariable, these equations will be reduced to the
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more simple forms ydy + xdx — 0,

ycPy + c?y + daP = 0,

and ycPy + SdycPy = 0.

In like manner if a; is regarded as a function of y, we

have ydy + xdx = 0,

axPx + d3?+dy^ — 0,

axPx + Sdxd^x = 0,

and so on.

Again, if x and y in the product xy^, are considered and

treated as being independent variables, then we shall have

d (xy'^) = y^dx + Ixydy^

d\xy'^) = 4:ydydx + 2xd-i^

cP{xy') — Mxdy\

d\xf) =0,

dXayf) = 0,

and so on.

(15.) Having an equation between x andy, in which x is

the independent variable ; we propose to show how to change

the equation, so that x shall become a function of y, or so

that X and y shall become functions of a new variable.

We may, according to what is shown at pages 10 and 12,

represent that y is a function of x by the form -— = -t— ;

dy

consequently, we may differentiate the first member of this

by regarding x as being the independent variable, and the

second member on the supposition that a? is a function of y ;

which gives -p- = 'i:^'- ^* ^^ easy to perceive that

this result is the same as to write d — for -^ , and then
daa ax
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to differentiate d~ by regarding dy as constant, or taking

y for the independent variable.

Indeed, if we had differentiated the right number of the

above equation by regarding dx and dy as both variable, we

should have found d ~r-\ = , « —, which is clearly
\dx\ dxr

the same as to take the differential of -j- , when dy and dx

are both regarded as variable; consequently if we make

d-y = 0, or dy = const, the preceding differential reduces to

d'^xdy

da?
as found above.

It is hence manifest that for -~ we may write d ~ , or

regard dy and dx as both variable, or if convenient take

d^xdy
- : and mce versa.

dx' '

(16.) To show the facility that the use ofpartial differen-

tial coefficients sometimes gives in the solution of difficult

questions, we will take tJie following important

PROBLEM.

Given s = ^ (a + xy) = a function of a + a^ (1)) i'l

which a and x are regarded as independent variables, and

y = il' (s) = a function of s (2) ; then it is proposed to

develop s according to the ascending powers of x.

According to Maclaurin's Theorem, see (b) page 17, we

may assume
, ds' d^z' of c^z' a?

^^^ + ^ =^ + ^1:2 +-^ 12:*+'*-°" • (^>'



38 THEOBEMS OF

for the development, in wHcli s', -j— , -3-5- , &c., repre-

sent tte values of z, -j- , -^ , &c., that result from put-

ting a; = in them.

It is manifest by taking the partial differential coefficients

of (1), that we shall have

dz_ d.<j>{a + xy) d.{a +xy)

dx d.{a + xy) dx '

and — = d^flj\-offy)_ ^ d.{a+ xy) _

da d.{a + xy) da '

consequently, eliminating the differential coefficient

d<^(a + ayy)

d.{a + xy)

from these, we shall have

dz d.(a + ayy) _ dz d.{a + xy)

dx da da dx '

/ da\ dz / dy\

dx\ dy) da V dx)
'

Because (2) gives

dy_ dip{3) dz _dy dz
-i ^V _ ^V ^^

da dz da dz ' da^ dx dz' dx^

we easily reduce the preceding equation to

dz dz ...

d^=yd^ (^>

By taking the partial differential coefficients of (4) rela-

tively to X, we shall have

d^z J I d3\ J dy dz
, j (dz\

,

or, since

dy _dy dz , , (dz\ ., , _ d^z _ tPs

'^~dz'^ ^ ^ \^/ ~ ~ ydadx~y dxda

dzf^ da\
or
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(page 22), we have

cPz _ dy dz dz ^z
d3?~ dz' da' dx ^ dxda

(dy dz dy\ ,/ dz\ ,

and since (4) gives^ —y -^-^ tl^is is easily reduced to

da

Differentiating the members of this equation relatively to

X, we have

da? dadx dxda
[ dx \ '

'

on account of the independence of a and x, and the differen-

tiations relatively to them.

It is easy to perceive that —-^ may, as before, be re-

duced to d I y' -^\ -i- da, which gives

and proceeding with this, as before, we have

dx
-^da?,

which, as before, gives

d^z „ / ^ofe'

dai
l — d? (y*^) -T- <fo', and so on.
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dsK the values of-i— and y, tliat result from putting a? =

ds'
in them, are represented by —^ and y', we shall have

da

M\
d2^_ ,<y_ iF2^_ ^y da)

^^^ ^^ ^^
d<B
~ " da' dse^

"^
da

'

Hence, from the substitution of these values in (3), we get

^=^ +\y d^r+^t—i72+^^ iM +' ^''^

• ih);

which clearly holds good, when any like functions of s and z'

are put for s and s' in it; noticing, that (A), thus generalized,

is called the Theorem of Lapla<:e / and if we put 1 for a;, in

(A), it will become what is called the Theorem of La Grange.

To perceive some of the uses of (A), take the following

EXAMPLEa

1. Given Js" — cs + li= 0, to find z in a series of the

known quantities.

The equation is readily changed to the form

d h ^

consequently, for ^ in (1) we put 1, or unity, and y = s"

;

d ., I
also, a = - and a; = -

.

'

c

ds'
By putting x =^0 we get s' = a and thence -5— = 1

;

also, y= 3'" gives y' = s'" =a\ '

"• *«
• -

-~

- - ' , ds'
and thence •' ^'da~
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dz' ^ -, I ,^dz'\
daBecause y' = a" and- -=— = 1, dly'^ -,— 1 -f-

d (a^")
becomes —t—- = 2Ma^"~^

;

da

also, d^ iy"^\ -^ da'' = d' {a'") ~ da' = 3w (3w - 1) a'"- \

and so on.

Hence, collecting the results^ we shall get

s = a + «"« + 2na'''-^ r-x + 3w(3?i — l)a="-= --jr-^ +, &c.

If «, = 3, 5 = 1, c = 3, and d= — 1,

the proposed equation becomes s' — 33 — 1 =:
;

which gives a = — ^ , and £» = ^ .

Hence, from the preceding series, we shall have111 4 ,

s=-
3 81 729 19683

^^^^
-,&c. = - 0.3472,

19683

which is one of the roots of the equation 3°— 3s —1 = ;

correctly found in all its figures.

2. Given Js — cs" + d— 0, to develop s in a series.

Since the equation is equivalent to

d c -
s^ — ^+^ z''--a + xy;

we have ^ = 1, a= — t , x = -j^, y =sn. Putting x= 0,

dz' - - -
get z' =a and -5— = 1 ; and y — z'^ becomes y' =z' " =a«.
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Hence, if we change n into — in the series for z in the pre-

ceding example, we shall get

i 2 l-i a? 3/3 ^\ 1-1! a?

n 1.2 n\n / 1.2.3

as required

If we have the equation 3o' — v — 1=0; then, putting

«' = s or v = 3 ,

it becomes 3s — s* — 1 = or z = -^ + -„ z
,

o o

so that n = 3, a = - and a;= ^ in this equation.
o o

If - is put for - a and x in the series for z, it becomes
3 ^ n

= 0.3333 + 0.23112 + 0.053416 +, &c. = 0.61787 +, &c.

;

and hence « = |/s = 1^0.61787 = 0.85173, whose first two

decimal places are correct

3. Given Az''+ Bz'^+ Cz'"'+ . . . . + N = 0, to find s.

Since the equation is equivalent to

N 1^"= — -K—-r (B^"' + 0^"" +, &o.) = a + x7/;

N 1
we have a =—v- and a!y = — -r- (B3'''+C3""+, &c.); and

we may evidently put a; = — -j- and y = Bs"'+ G^"+ , &c.

From what precedes, we get s = (a + ofyy, which corre-

sponds to ^ (a + xy) in (1), p. 37 ; which, by putting x =0,

gives z' = 0,", which gives
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dz' 1 l_i a~^-— = - a" = '

da n n

and y' = B^'"' + Cs"'"+, &c. = Ba" + Ca" +, &o.

Hence, from (A) we get

3 = a" + (Ba" + Ca" +, &c.) x +
n' n" 1—

n

tZ [(Ba"+ Ca" +,&c.y a " ]

da, 1 . 2/1
+

(£- [(Ba" + Ca" +, &c.)°a "
J a;'

To illiistrate this formula, we shall take the equation

^—Zz— 1 = 0, under the form s^— s"^ — 3 = 0.

Hence, A = l, B = -1, C = 0, D = 0, &c.,

isr

]Sr=— 3, a=-T- =3,a! = -l, n=2, w'=-l,n" = 0,&c.

From the formula, we get

1 n-\-\
, ,

2w% "

consequently, by putting 3 for a and 2 for m, and giving the

square roots the ambiguous sign ± , we get

3= ±4/3 + i± ^+,&c.

' - ± 1.7820 + 0.1666 T 0.0138 +, &c.

Hence, we have 1.88 + and — 1.54 — for approximate

values of two of the roots of the proposed equation, cor-

rectly found to two places of figures in each.

Eemarks.—1. It is sometimes necessary to distinguish
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between total and partial differential coefficients. Tlnis, if

, du du dp du dq du dr

dx dj> dx dq dx dr dx'

we call tlie first member of tbe equation the total differential'

coefficient, and the terms that compose its right member are

its parts, or what are called the partial differential coeffi-

cients.

2. If p = X, it is clear that the equation will be reduced

du du du dq du dr

dx ~ dx dq dx dr dx^

where it will be perceived that the total coefficient -5- in the

first member of the equation, is apparently the same as the

partial quotient in the second member; consequently, for

distinction's sake, we inclose the partial quotient in a

parenthesis, thus \-j-)- Hence, the preceding equation will

be written in the form,

du dr
^

dq dx ~^
dr dx '

and we may clearly proceed in like manner in all analogous

cases.

(17.) It may not be improper, in concluding this section,

to notice some of the different methods that have been used

by different authors in treating the Differential Calculus.

1. Leibnitz and Newton, the illustrious founders of the

Calculus under different forms, respectively used the injln-

itesimal method, and that of the limiting ratio.

Thus, to find the differential of a^ ; we change x into x+h
and thence get {x + A/—^= Zx'h + ZxK' + A', for what is

generally called the difference of as* ; noticingrthat it is some-

dii /dii\ du dq

dx \dx/ da dx
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times called tlie increment or decrement of »', accordingly as

it is positive or negative.

If h is finite, tlie difference being evidently finite, is called

&finite difference ; and is often denoted by writing the Greek

letter A (delta), called the characteristic offinite differences,

before or to the left of a?^ ; and since A = a? + A — a?, we write

Ax for h ; consequently, for {x + Kf— 3?= SccVt + Zxh^-\- 7i',

we may write Ax^ = Zx'Ax + Zx{Axy + {AxJ : noticing, that

a? or (more generally) 3? + c, e being constant, is often called

the integral of Ax^ or of its equivalent, Za?Ax + ZxAj? + Ax?.

If h is unlimitedly small, or an infinitesimal, it is clear

that Saj^A + SasA^ + h? will also be unlimitedly small, or an

infinitesimal ; and if infinitesimal differences, sometimes

called differentials, are distinguished from finite differences

by writing d for A, then, according to the method of

Leibnitz, the equation {x + A)' — ar' = 3a;% + SaiA^ + A' be-

comes da? = 33?dx + 3xda? + da?
; for which, on account of

the comparative minuteness of Zxda? and da?, we may evi-

dently write da? — Za?dx, which is of the same form, that

our rule at, p. 5 will give for the difierential of a?: noticing

that a? + c is called the general integral of da?, or of its

equivalent, 3a?dx.

To signify that the integral of any finite difference is to

be taken, the Greek letter S (sigma) is generally written be-

fore or to the left of the difference, inclosed in a parenthesis,

if necessary. . Thus, 2Ax'' = I i^x^Ax) + 3x{Axf + {AxJ\,

which clearly equals BSa?Ax + BSx{Axf + ^Axf, is used to

denote that the integral of Aa?, or of its equivalent,

8a?{Ax) + 3x{Axy + {Axf

,

is to be taken ; and since

(a; -t- A)' — aj' = (a; + A)' -I- c — a;' — c = A(p? + c), c= const:

the most general form of the indicated integral is a;' -f 0.
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In much the same way we indicate the integral of any

proposed differential, by writing /", called the sign of integra-

tion, or the cha.racterhtic of integrals, to the left or before

the diflerential, as before. Thus, we have

fda?=fd{3?-{-c),

in which c = coast, ^f2>3?dx) = Zfx^dx = »' + c : noticing,

that the constant c is used for generality, or to make the

integral applicable to any case that may be required.

Again, resuming {x + /if — ar' = 3a^A + 3xh^ + A', and

dividing its members by A, it will become

A

which clearly shows if A is diminished indefinitely, the right

member has Say' for its limit

Hence, according to the common method of taking the

limit, by putting A = 0, the equation is reduced to the form.0 . . dx'
- = 3x? ; or since for - we ought evidently to write -y- we

have -7— = Z3?dx ; see my Algebra, pages 256 and 257.

Since {33?h+3xh? +h?) -=-A=3a^ +3xh^ +A=, this quotient

is often (with great impropriety) called the ratio of the incre-

ment or decrement of a^ to the corresponding increment or

decrement of the independent variable x ; and 3a?^, the limit

of the quotient, is often improperly called the limit of the

ratio when A is infinitesimal.

The preceding process is svhstantiaUy the same as Newton's

method of limits.

Because [a (a; + A)" + c — {aaf + c)]

= a [waj"-i A -+- ^^^^ a; »-' A'
-h. , &C.]
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is under the form of an exact difference, if h is finite, tlie

equation (agreeably to what has been done) can be expressed

by the form

^{ax^ + c) = a [nx'^-^Ax + ^^^~^^
x"- ' {Jxf + , &c. j ;

1 . 2

but if A is infinitesimal, the equation is equivalent to

d {ax" + c) — nciaf-^dx.

Similarly, because {x + h) {y + k) — xy= xh + yh + hk is

under the form, of an exact difference, if A and Jc are finite,

the equation may be expressed by the form

A {xy + c) = xAy + yAx + AxAy;

but if h and 7c are infinitesimals, the equation becomes

d {xy + c) = xdy + ydx
;

by rejecting dxdy on account of its comparative minuteness.

It is manifest from these examples, that in order to find

the integral of any finite difference or differential, it must be

exact, or be reducible to a difference or differential which is

either exact, or differs insensibly from an exact difference or

differential.

2. Eesuming the equation

{x + hf — a^ = SaPh + SxTv' + h\

and putting dx for h in the first term Zx'h of the difference

of ar'', it will become Zdi?dx. If the operation to be per-

formed on 0^, in order to obtain Za?dx from it, is denoted by

d.a^ OT daf, we shall have d.af = dx^ = 3x^dx; which indi-

cates and expresses the differential of a^, obtained by defi-

nition, according to the method proposed hy the celebrated

Lagi'ange.

Supposing X to be any function of », and thatX becomes

X' when x is changed into x ±.h; then, supposing x and h
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to be imdetenniiied, Lagrange proved that X' may be ex-

pressed by tbe form X ± X, A + Xj ^-r ± Xj :rrrTr + , &c.;

inwhicli, be called Xi, Xj, X3, &c., tbe first, second, tbird,

&c., derived functions of X ; and it is easy to perceive that

tbe series is the same as Taylor's Theorem.

3. The difficulties and unsatisfactoriness that have attended

the treatment of tha first principles of the Differential Calcu--

lus, appear to us to have arisen from the circumstance, that

it has been thought necessary to convert X' into a series of

the form X + AA + AjA^ + A^A' + , &c., and then to reduce

tbe difference X' —X = Ak + AJv' + AjA' + , &c., to its first

term AA, in order to get ^X = Adx , or the differential ofX
For this process has evidently introduced the infinitesimals

of Leibnitz, and the limiting ratios of Newton and others,

into the Calculus, as furnishing reasons why the terms

AiA°, A2A', &c., must be rejected, in comparison to AA.

Whereas, the true reason for the omission of these terms, is

that so long as x and A are indeterminates, the term AA rep-

resents the sum of all the cbanges of X that result from the

separate change a/ — a; = A of each x contained in X

.

And it is evident from the reasoning in (9) at p. 15, that

we may consider the terms that follow the second term -j— A
CtnX/

in Taylor's Theorem, as deducible from it when x and A are

regarded as being indeterminates, in a way very analogous to

that of finding the terms that follow the second term from it,

in the investigation of the Binomial Theorem: see Ex. 16,

p. 56, of my Algebra.



SECTION n.

TRANSCENDENTAL FUNCTIONS.

(1.) When a function is sucli ttat it can not be expressed

by means of its variable and constants in a finite number of

algebraic terms, it is called a transcendentalfunction. Thus,

^log X, a', sin a?, cos x, &c., are transcendental functions : tbe

first being a logarithmic function, the second an exponential

function, and the third and fourth are circular functions.

(2.) Any number or quantity may he expressed in a

transcendental form.

For if a represents any number or quantity, it is clear that

for a we may write

/ a' a^ «*
, 1! \ , / «\ «' a*

, . \° 1

(«-T+-3-T+"^°-)+('^-Y+T-T+'Hir2

1 . , ci? a^ a* . .m which a—o"+
"o X"'"'"'°''

is called the hyperbolic or Napierian logarithm of 1 + a.

gi 1^8 ^4
Hence, if we put a—9" + "q"—T+i ^°' — -^) ^^ ^sX\

A? A?
clearly have l + a = l + A + r-^+ —^ +> &c. ; and in

V' ¥ 5*

like manner, if J—o" + "o 37^"' *^°'' ^ represented by

B^ B'
B, we shall have l + 5 = l + B +^+ ^^ +, &c.

3
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(3.) The product of the corresponding members of these

equations will be of a similar form.

For we shall clearly have

(1 + a)(l+ 5) = l + a+i + ai^l+ (A+B)+ (A+B/
j^

+ (A + By^+,&c.

If a + i + ab- ^ ^ ^—'-V- 3 ^-, &c., •

is represented by C, it is clear from what has been done, that

the preceding equation is equivalent to

1 + ^+12 + 1:2:3+'*'^

= 1 + A + B + (A + B)^ j^ + (A + B/jl^ +, &C.;

which clearly gives C = A + B.

Because A and B are the hyperbolic logarithms of 1 + a

and 1 + &, and that C is the hyperbolic logarithm of their

product, it results from the preceding equation, that the

.

hyperbolic logarithm of a product equals the sum of the

logarithms of its factors.

If the members of C = A + B are multiplied by the

arbitrary multiplier m, called the modulus ; it is clear that

its properties will not be changed, and we shall get

«iC = mA + ?mB;

such, that mA, mB, and mC may be called logarithms of

1 + a, 1 + 5, and of their product.

Hence, in any system of logarithms, the logarithm of a

product eqitals the sum of the logarithms of its factors /
reciprocally, the logarithra of a quotient equals the logarithm,

of tlie dividend, minus that of the divisor.

Hence, too, the logarithm, of a power equals the logarithm

of its root multiplied by the index of the power; and re-
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ciprocally, the logarithm of a power, divided ly its index,

equals the logarithm of its root.

If the logarithni of a number or quantity, whose modulus
is m, is indicated by writing log before or to the left of it

(inclosed in a parenthesis when necessary), we shall clearly

have log (1 + a) = m /a--J +
-J- -J

+, &c. ) ....(a);

which we shall call the Logarithmic Theorem.

It is evident from what has been done, that we shaU. have

(l+a)^ = l + A.+ (^y + ^5+,&c (J);

which is called the JExponential Theorem, in which A and

Ax are the hyperbolic logarithms of 1 + a and (1 + a)".

If A = 1, (&) becomes

{l+aY=l+x+ — + j^ +,&c. = (1 + 1+ — +, &c.j

• • • • (*');

which gives

l + a=l+l + j^ + ji-g +, &o. = 2.7182318284 +, &c.

which is generally expressed by e, and is called the hose of

hyperbolic logarithms, since its hyperbohc logarithm is sup-

posed to be unity or 1 ; consequently, putting e for 1 + a in

ip'), it becomes i

e-=l + a, +^+^+,&c (5");

which shows, if we put e^ = N", that we shall have x = the

hyperbolic logarithra of N, since that of e = 1.

If we write log before a number or quantity (inclosed in a

parenthesis if necessary) to denote its hyperbolic logarithm,

it is clear that log (1 + a)^= Kx ; and as
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log(l + ay — m log (1 + of,

we get log (1 + ay = mAx.

If we assume mA = 1, or wi = -^, the preceding equation

becomes log (1 + af — x, and of course log (1 + a) = 1

;

consequently, 1 + a represents the base of the logarithms

denoted by log. Hence, assuming (1 + ay = N, we have

log (1 + ay = log N = a; ; since 1 + a is supposed to be taken

for the base of the logarithms represented by log.

log N
Because log N — m log N = —^—, it results that we

shall get log N, iy dividing the hyperbolic logarithm of N
hy the hyperholio logarithm of the base, or by w,ultiplying it

by the modulus (-r-) ; reciprocally, log N, multiplied by the

hyperbolic logarithm of the base, or divided by the modulus,

gives the hyperbolic logarithm of N.

Thus, if the base 1 + a = 10 = the base of common
logarithms, the tables of hyperbolic logarithms give

log 10 = 2.3025850929, and thence the modulus

(m) = 4- =r^ =0.4342944819.
^ ' A log 10

Again, from the tables we have log 2 = 0.6931471, and

thence we get log 2 = the common logarithm of 2, equals

0.6931471 ^ 0.6931471 x 0.4342944 = 0.3010299,
log 10 '

which agrees with the common logarithm of 2, as given by

the logarithmic tables. Eeciprocally,

log. 2 X log 10 = log 2 -=- 0.4342944 = 0.6931471,

equals the hyperbolic logarithm of 2.

It follows from what has been done, that the calculation
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of a table of logarithms to any base may be considered as

being reduced to tbe calculation of hyperbolic logarithms.

For examples in illustration of the calculation and use of

logarithms in the solution of problems, the reader is referred

to p. 527, &c., of my Algebra.

Eesuming 6^=l+a;+^+ jn^ +, &c., from (&"),

p. 51, and changing x successively into x\ —\ and — xV—1,

we get the equations

x" a^V^ a^
6- :V:=i 1 + x\/-\ - ^2 - 12.3 "^

1.2.3.4
"^' '^°'

_ . •_^ __»^ ^ „~
12 + 1:2:3:4"" 1.2.3.4.5.6 +' °-'

+
aj»

1.2.3 1.2.3.4.5
— , &c.j V^-l\

* ~ ^ 1.2 + 1.2.3.4 1.2.3.4.5.6
"^'

'

+
1.2.3 ' 1.2.31:5

~ *''•) ^ ^•

By taking the half sum and half difference of these equa-

tions, we get

(^. V3I + ,-. V3T) ^ 2 = 1 - ^ +j^ -, &c., and

(^ _^ j^^y 1-1 12.3 + 1.2.3.45 '* '

which (in trigonometry) are called the cosine and sine of a?.

Denoting the sine and cosine by writing sin and cos for

them, the preceding equations may be written in the forms

sin X — — -.
, and cos x = ^ . . {v).
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By adding the squares of (c), we get sin' x + cos' x = l;

wMch is also evident from

a? a^
sin a! = a; — v-?r5 +i <^°-) ^^^ ^°^ » = 1 — q-H +> &°'

1.2.6 i-^

"We are now prepared to stow how to find the differentials

of logarithmic, exponential, and circular functions.

(4.) To show how to find the differentials of logarithmic

and exponential functions.

We will show how to find the differential of a variable or

function represented by log x.

From (a), given at p. 51, if we put a? for 1 + a, we must

clearly put a? — 1 for a, and we shall have

, (x-Vf {x-Vf {x-Vf , ^\ogx = m\x-\- ^^-^ + ^-^ - —4-^ +, &o.],

in which m is the modulus; consequently, by taking the

differential of this, m being constant, we shall have

d(loga!) = m \\.—{x - 1) + ^a) - 1)' -{x — 1)' +, &c.] x dx

mdx mdx
_~

1 + («-!) ~ ~¥" '

and when ot = 1, we have d (log x) = —

.

CO

Hence the differential of the logarithm of a variable or

function can be found by the following

EULE.

1. Divide the differential of the variable 'or function by

the variable or function, and the quotient, multiplied by the

modulus, gives the differential

2. If the modulus is unity, or the logarithm hyperbolic,

then divide the differential by the variable or funption, for

the differential
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Eemabks.—1. When it is possible, hyperbolic logaritlinis

ought always to be used in finding differentials, because

their differentials are of the most simple forms.

2. It clearly results from the rule that the differential of a

yariable or function equals the differential of its hyperbolic

logarithm, multiplied by the variable or function.

EXAMPLES.

1. The differentials of log(a+a!) and logaaj= loga+ loga?,

mdx , mdx
are and .

a + X X
US

2. The differentials of log {x + y) and log- = log x— log y,

dx -\- dy , dx dy _ ydx — xdy
are and— — — —

:—

.

X + y X y xy

3. The differentials of log {a? + x")

and log (a' — x^) = log (» + «) + log {a — x),

2mxdx . dx dx 2xdx
are -tt 3 and

d' + a^ a + X a — x~ a^ — a^'

4. The differentials of

log {aP — a?) = log(»+«) + log {x — a)

2
and log - = log 2 — log x,

dx dx 2xdx
are —

;

1-

X + a x — a or — a^

which is the same as to divide d (x^ — a^) by (aP — a°), and

dx

X
'

m/

5. The differentials of ]og y^ {a^ + xj" = log (a' + a?) ^ and

1 r , //^ r 2\T
2rn!xdx

log \x + »/{^ ± a')] are -^^,
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6. The differential of log ^1±^"Z?, is

xdx /I 1 \ ^adx
(

I L__U
y(a=+ar')\f(a= + «")-« ^(a» + x") + a/ ^^/(a^ + ar')

7. The differential of aaf" is aa?"* x = max"'-^dx.
X

8. The differential of jey is

xy X d log £»y= xyd (log a? + log y)

9. The differential of ^, is?p - ^) = i^Zl^.
If y\x yl ir

10. The differential of a* is

a"' X d^o^af) = a'dQoga x x) — a'' loga x dx
;

which can be also found from assuming y = a", or

d^j
logy = x log a, or— = log adx, ovdy = y logadx—a" log adx,

as before.

It is hence evident, that when the exponent of an expo-

nential is alone variable, we can find the differential of the

exponential by the following

KULE.

Multiply the hyperbolic logarithm of the base or root of

the exponential by the exponential, and the product by the

differential of the variable exponent.

Eemark.—If the base of the exponential is also variable,

then we must add the differential, regarding the base as alone

variable to the preceding differential ; and the result will be
the complete differential, when the base and exponent of the

exponential are variable.
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EXAMPLES.

1. The differentials of 2^ and 3", are 2^ x log2 x dx, and

%y log Z X dy: noticing tliat 2 and 3 are the constant roots of

the exponentials, whose variable exponents are x and y.

2. The differentials of e^ and e~'', are e'dx and — e-'^dx
;

since log e = 1.

3. The differentials of 5a^ and 0"% are Sa^loga x dx, and

c^^logc X adx.

4 The differentials of e'°«'^ and a'°s=:, are

e'ogx^ and a'^^Moga x —

.

X ° X

5. The differentials of ay" and y"*, are

xay'^-'^-dy + ay^logy x <^a3

and — xy-^'-^dy — y" log y(&,

as'is clear from the rule and remark.

6. The differentials of a^ and e"', are a^'log ae'^cto and

e"' log a X a^iiaj ; noticing that e" and a^ are variable expo-

nents of a and e, and that e stands for the hyperbolic base.

7. The differentials of s' and (log x) '"^ ^, are

s'' logs X (yaj" ~^ cZa? + a;" log xdy) + x^z^ ~^dz,

and (log a;)"'^'^ x log (log x) 1- log a? x (log xy"^"-'^ x —

= (log «)">«= x(l +log'a!)^:

noticing, that the notation log' x is used for log (log aj),

and we may also represent log [log (log a;)] by writing log' x
;

and so on, to any extent

8. The differentials of e vo-^'j and e '"«''
, are
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and .'--^.
X log as

9. The differentials of e^^^' and e-^ "^ , are

gxV^r^ -/-Iffoand g-:^^-! X- i/-l ^K.

10. The differentials of a""
^^^ and a-^ ^-"^, are

a==
^-^ log a X <& ^^ —I, and a-"^ ^-^ log a x — dx V — 1-

ip.) We will now show how to find the differentials of cir

cularfunctions.

From (c) page 53, we have sin a; =
g..4^_^_.V_l

2 V— 1

and cos x =
^|

^—

;

whose differentials give

gx 'i/^i
j^

g-x\rzi

d (sin a?) = „ dx = cos aidx,

g.^^1 _ ^-xV—i
and <Z(cos «) = x V — Idx

„xV^i _ „-xVzri

dx^^ — wxxdx.
2 4/-I

By adding the squares of these differentials, we shall get

(d sin a?)^ + {d cos a;)' = cos^ xdd^ + sin^ xdo?

= {cos'x + sin^ x) dx^ = da?,

since we have shown, at page 54, that cos^a; + sin^a? = 1.

Ekmark.—^It is clear from the expressions for sin x and

cos X, that they, together with x and dx, represent numbers

or geometrical ratios, and not quantities.

It clearly follows from what has been done, that we can

find the differentials of the sine and cosine of any variable

by the following
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RULES.

1. The differential of the sine equals the cosine multiplied

hj the differential of the variabla

2. The differential of the cosine equals minus the product

of the sine and the differential of the variabla

EXAMPLES.

1. The differentials of sin 2a! and cos 2a3, are 2 cos 2xdx

and — 2 sin 2xdx.

2. The differentials.of sin mx and cos mx, are

m cos mxdx and — msin mxdx.

3. The differentials of sin {a ± x) and cos (a ± x), are

± cos (a ± x) dx and ^ sin (a ± x) dx.

4. The differentials of sin^a? and cos^ x, are

2 sin X cos oidx and — 2 sin x cos xdx.

5. The differentials of sin*" x and cos*" x are

m cos a; sin"""' a3<fa3 and — m sin a? cos"*"^ xdx :

noticing, that the exponent m denotes the mth powers of

sin X and cos x.

6. The differentials of tan x = and cot x = -^
, are

cos a? sm.a3

, d sin X X cos x — d cos a? x sin x
a tan x=

cos-aj

cos^ajc^a? + sia' osdx dx
sec" xdx

d cos a; X sin 33 — <f sina; x cos x
and a cot x = ^-j

sm'' a;

sm's!
= — cosec^ xdx.



60 DIFFERENTIATING TANGENTS, ETC.

Hence, the differential of the tangent of a variable, equals

the differential of tJie variable divided by the square of its

cosine or multiplied by the square of its secant / since unity

divided by the cosiiie is {in Trigonometry) called the secant.

And the differential of the cotangent of a variable, equals

minus the differential of the variable divided by the square

of its sine or m,ultipUed by the square of its cosecant

EXAMPLES.

1. The differentials of tan 2a; and cot 2a!, are

'2idx -. 2dx
and

cos^ 2a! sin" 2a3

'

2. Tlie differentials of tan ma! and cot mx, are

Tudx - mdx
and :-:; .

cos^mx

3. The differentials of tan {a ± a!) and cot (a ± x), are

±dx , dx
and T -r-

cos^ (a ± x) sin" {a±.x)'

4. The differentials of tan a?™ and cot a?" , are

m^&naf^-'^ dx , m,Qoix^--^dx
2 and ^-5

cos X Bvar x

5. It is easy to perceive that we may, in much the same

way, find the differentials of and -:— ; which give
cos a! sm a!

°

,1 d cos X sin oedx ,a —— = — —-^— = 5— = tana; sec xdx
;

cos x cos X cos" a!

and in like manner

J 1 c^sina; ,a — = 7-^— == — cot X cosec xdx.
sm X sm' X

Because and -. are called the secant and cosecant
cos X sm X
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of X, we lienoe find tlie differentials of tlie seoant and co-

secant of any variable, bj the following

EULB.

The differential of the secant of a variaMe equals the

product of the tangent, secant, a/nd differential of the

variable.

And, the differential of the cosecant of a variable equals

minus the product of the cotangent, cosecant, and differen-

tial of the variable.

Thus, the differentials of sec™ a; and coseo"*;)?, are

tan X sec x x m sed^-^xdx

and — cot x cosec cc x m oosec"' ~^ dx;

and the differentials of sec {a"' + as"') and cosec (a"* — x""), are

tan (a'" + »"•) sec (a"' + x"") x ma?"-^ dx,

— cot (a" — x"') cosec {a"" — a?") x mx'"'^dx,

6. Because versin a3=l — cos x and coversin as = 1— sin sr,

their differentials are sin xdx and — cos xdx ; which are the

same as those of the cosine and sine after their signs are

changed.

7. Since suversine of a; = 1 + cos x, and cosuversine

a? = 1 + sin -a;, their differentials are — sin xdx and cos xdx
;

which are the same as those of the cosine and sine.

8. The differentials of sin (sin x) and cos (sin x), are evi-

dently d sin (sin x) = cos (sin x) cos xdx,

and d cos (sin x)=^ — sin (sin x) cos xdx

;

and the differentials of sin (cos x) and cos (cos x), are

d sin (cos a?) = — cos (cos x) sin xdx,

and d cos (cos x) = sin (cos x) sin xdx
;

and so on, for other analogous forms.
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9. The differentials of log sin x and log cos x, are

7 1 • dsinx
a log sm X = —. = cot xdx,° siniB

- 7 1 dcosx . ,

and a log cos x = = — tan xax:° cos 35

and these multiplied by the modulus {m) , will give the dif-

ferentials of log sin x and log cos x.

10. The differentials of log tan x and log cot x, are

, , d. tan X dx dx 2dx
d . log tan X = — = —5— = -: = -—s"

»

° tan X cos' x tan x sm x cos x sm )ix

T , , d. cot a; c^a; 2c?.73

and d . log cot x = ;
= -.

= :

—

rr- ;° cot X sm a; cos x sm 2j;

and we may proceed in like manner in all analogous cases.

(6.) Since, to find the preceding values, it is necessary to

know those of sin x, cos x, tan x, &c., when x and dx are

given ; we will now show how to obtain their values to any

degree of exactness that may be required, by converging

series.

To the end in view, we will find the -expansions of

sin {x ± A) and cos {x ± h), when arranged according to the.

ascending powers of h.

Thus, if we put sin x for X, and sin {x ± /() for X', and

± A for A, in Taylor's Theorem, or (a), given at p. 16, we

, ,, , (fX t^sina; cZ^X dcosx
snali have -y- =—,— = cos x, -=-=- =—,—= — sm x,

dx dx dor dx

d'X d'X .

-n- = — cos X, -r-r sm x, and so on.
daf ' dx*

'

Hence, firom the substitution of the preceding values in

(a), we get, after duly ordering the terms,
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sin {x ± h) :^smx{l- ^+ j^^^ -, &c.)

± "^^^ ^ (^ - lis +mW -' ^•^•)

= sin X cos A ±, cos x sin A (see p. 53) .... (d).

In like manner, we easily get

cos {x ± h) = cos as (l - ^ + yMA ~' ^°)

= cos X cos A ^ sin x sin A (p. 53) .... {d').

If we put A = 83, and use the upper signs in these formu-

Ite, they give

sin 2» = 2 sia a? cos x, and cos 2a! = cos^ x — sin° a;

;

or, since sin^ x + cos^ x = 1, we have cos^ x = 1 — sin^ as,

which reduces

cos 2x = cos^ X — sin" aj to cos 2a3 = 1 — 2 sin' x
;

which, by changing x into ^, becomes cos as = 1 — 2 sin" ^

.

As an example of the use of the last of these formulae,

we shall successively put a; = 1.5 and 1.6, and thence get

n — 0.75, and j- = 0.8, for the corresponding values of
2 ^

X -^2.

From the substitution of these values in

/xV Z^^"

X X
"(!) (i)

we shall get

^'''
2 - 2

~ 1X3 + IXSIJ *°"'
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sin 0.75 = 0.75 — 0.070312 + 0.001977 - 0.000026 +, &c.,

= 0.681639,

and

sin 0.8 = 0.8 — 0.085333 + 0.002730 - 0.000041 +, &c.,

= 0.717356.

Hence, we get 2 sin= ^ = 2 sin= 0.75 = 0.929268, and

thence we have

cos X — cos 1.5 = 1 — 0.929268 = 0.070732.

In a similar way, we have 2 sin^ 0.8 = 1.029059, and thence

cos 1.6 = 1 - 1.029059 = - 0.029059.

Hence, there is clearly a value of x gi-eater than 1.5 and less

than 1.6, which we shall represent by „, such that we shall

have cos - = ; and thence from cos^ x + sin^ ^ = 1, yre

get sin' = 1, or sin ^ = ± 1.
2 ' " " " 2

i»\3

From cos a; = 1 — 2 sin^ „ = 1 — 2
(i)-r

(i)

2.3
+ ,&c.

by putting a; = 0, we also have cos = 1, and sin | = 0,

or sin a; = ; and from

cos TT = cos'' 2 — sin^ gi since cos' o ~ ^' ^"^^ ^^'^'h = 1)

we have cos 77= — 1.

(7.) For convenience in what is to follow, we now propose

to show how to represent 1, sin x, and cos x, geometrically.

Since sin^ x + cos' as = 1, it is clear that the sum of no
two of the three, 1, sin x, cos x, can be less than the third,

while their difference can not be greater than the third.
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These results con-espond to well-kaown properties of the

sides of a rectiliheal triangle; viz., tliat the sum of any two

of its sides can not be less than the third, while their differ-

ence can not be greater
;
propeities, that evidently follow

from the consideration, that a straight line is the shortest

distance between its extremities.

Thus, let ABC denote a rectilineal triangle ; such, that AC
equals any unit of length, while CB and AB are the same

parts of AC that sin x and cos x are of 1 ; then, it is clear

that AC, CB, and AB, may be taken as representatives of

1, sin X, and cos x. Similarly, if we take the equation

sin^ X + cos^ x' = 1, such that sin x' is the same part of 1

that AB is of AC, it is manifest that 1, sin x', and cos x'.

will also be represented by AC, AB, and BC ; consequently,

sin X = cos jc', and cos x = sin x'.

From {d), page 68, sin (a3 + A) = sin x cos h + cos x sin h

which, by putting x' for A, becomes

sin (a? + x') = sin a; cos x' + cos a; sin «'= sin^a? + cos^ a = 1

since cos x' = sin x and sin x' = cos x, and that

sin^a; + cos^ x = l.

Because sin {x + x') = 1, and that at page 64 we have

sin n = 1 , it follows that we must have a; + a?' = ^ , in which
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^ is a value oi x + x' that lies between 1.5 and 1.6. (See

page 64.)

Because (page53) C B = sin a; = a; — q-^r— + ^ „ ,
, ^ , &c.,^^' ' 1.2.3 1.2.3.4.0

and that AB = sina;' = x'— jy^ + j^g-^ , &c.,

by adding these we have

CB + AB = sin a; + sin x'

_ « , x' + x'^
,

a^ + a;'° .

-"^^"^ - -i:2X + 1.2.3.4.5 '

*°-

- {x + X') {1 - ^2.1~~ ^'^'')'

which is greater than the side AC ; and if a; = 0, sin x' = AC,

or if a;' = 0, sin a; = AC. Since

AC = 1 = sin(a;+ x') ={x + x') (l - ^+^'+^ +, &c.),

we hence get

{x + x')(l- ^^J +,&c.)

^ r , '-.(t <^+ 2a!aj' + x'^ , \

It hence follows that x and x' must be represented by the

angles A and C ; for if sin a; = we have x and the angle A
each equal to naught, and AC coincides with AB ; and in

like manner if sin »' = , AC coincides with BC. Because

of the inequality AC + BC > AB , ifX represents the angle

B, it is clear that we must have

1.2.3
X + a? —

^ „ q l-j&c.

^^+^-n^—17273—+'H>'" 12:3+"^
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for the proper representation of the inequality; consequently,

AC being expressed in terms of X in a way similar to the

representations of the other sides in temas of their opposite

angles, it clearly follows that AC must be the sine of

X = sin ABC.

From AC = a, + .,' - ^±^' +, &c., = X-^+M;
we must have X or the angle ABC equal to a; + »', the sum
of the angles A and C . Hence (see figure), if from the

right angle B, we draw the right line BD meeting AC in D,

so as to make the angle CBD = the angle C, we shall have

the angle ABD = the angle A.

Hence, the lines AD, DB, and DC, are equal, and the points

A, B, C, lie in the circumference of a circle whose center is

D and radius DB. If the angles A and equal each other,

it is clear that AB = BC, and of course AC^ = AB' + BC
or 4AD'-=2AB-2 or AB'^ = 2AD^ = AD'^ + BD^ con-

sequently, in the triangle ADB the angle D equals the sum

of the remaining angles of the triangle.- But, since the

triangles ADB and CDB are clearly identical, it results that

their angles at D must equal each other, and of course from

the well-known definition of a right angle, each, of them is a

right angle. Hence, the angles at A and B in the trian-

gle ADB are together equivalent to a right angle ; and in the

triangle CDB, the sum of the angles at C and B is equiva-

lent to a right angle. Hence, the sum of the angles of the

triangle ABC is equivalent to two right angles, and because

the angle B equals the sum of the angles A and C, it is clear

that B is a right angle, and that the sum of the angles A and

C is equal to a right angle ; and because the angles A and C
make the same sum, whether they are equal or unequal, it

clearly follows that their sum is always a right angle.
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Also, because the angle B is always in a semicircle whose

center is D and diameter AC, it follows that the angle

inscribed in a semicircle is always a right angle.

Eeciproeally, if one angle of a triangle is right, the sum

of the other two angles is right, and the square of the numer-

ical value of the side opposite to the right angle equals the

sum of the squares of the numerical values of the other two

sides. For ABC (see fig.) being the triangle, a circle de-

scribed on AC as a diameter, must evidently pass through

the right angle, and the triangle coincides with one of the

triangles that have been considered; and thence the truth of

the proposition is manifest It may be added that the sum of

the three angles of any rectilineal triangle' is easily shown to

be equal to two right angles.

(8.) We now propose to show how to find the numerical

values of angles.

Eesuming the right triangle ABC from p. 65, we have,

according to what is there supposed, AC to represent any

arbitrary unit of length, while the angles A and C are

represented by x and x', and CB = sin x, AB — sin x'

— cos X. If from A as a center, with AC as a radius,

the arc CGr is described meeting AB produced in G, it will

represent the value of sin x. By taking the differentials of
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CB = sin X and AB = coa x, we shall (as at p. 61) have
d.GE = cos xdx and d. AB = — sin xdx^ which give (as at

p. 58) ^[{d. G'Ef + {d.ABJ-] = dx, supposing x and sin x
to increase while cos x decreases. If from B toward A,
BH is set off to represent d.AB = — sin xdx and HE
drawn parallel to CB, meeting the tangent to the arc CGr at

C in B ; and if through C, CD is drawn parallel to AB,
meeting HE in D ; then, EC represents dx, and ED = d.GB
= cos xdx. For the right triangles ACB and ECD give

the proportions

AC or 1 : EC :: cos a; : ED, and 1 : EG :: sin a; : CD = BH,

which give DE = EC x cos x, and BH =: EC x sin x.

Since (neglecting the signs) BH = sin xdx^ the second of

these equations gives EC x sin a; = sin xdx^ or dx = EC

;

consequently, the first becomes DE = cos xdx, as it ought

to be. Because the arc GC and the angle x commence to-

gether at G, and increase together from G toward C, and

that the increase of the arc at any point is clearly in the

direction of the tangent (at the point), CE evidently repre-

sents the differential of the arc GC ; consequently, since

dx = GE, it follows that dx represents the differential of the

arc GC, and, of course, x equals GC ; agreeably to what has

been supposed.

Eemaeks.—1. It is easy to perceive that we may proceed

in much the same way as above, to find the differential of any

proposed arc of any plane curve, by expressing it, in tenns

of the differentials of its rectangular co-ordinates, like AB
and CB ; that is, by taking the square root of the sum of

the squares of their differentials at any point of the curve,

for the differential of the curve at the same point.

2. In our reasonings we have, and shall, generally, take it
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for granted that the reader is familiar with the definitions

and leading principles of Geometry and Trigonometry.

Thus, in the figure, supposed to be constructed, AC, CB,

AB, are called the radius, sine, and cosine of the arc GC|

also, AG, GF, and AF, are called the radius, tangent, and

secant of the same arc.

3. AC being represented by 1, since the equiangular

triangles ABO and AGF give the proportion

AB : BC :: AG : GF = «, or cos a; : sin a; :: 1 : !!,

or its equivalent, sin » = i cos x,

in which t = the tangent of x. Since

sin a; = 03 — ^-yg, &c., cos aj =: 1 —^ + j-gg 4 " > ^^-
!

consequently, the preceding equation may be written in the

form,

'^ ~
1:2:3 + 1.2.3.4.5

"' *°- = '^ (^ ~ 1.2 + IXSl ~' ^"1

'

which clearly shows that x can be expressed in a series of

the odd integral powers of t.

For a simple inspection of the terms shows t to be the

first term of the series ; and to get the second term, we put

t + Af for X, and thence have

t + A^- i|;3 +. -^c- = ^- 1^ +. &°-

;

consequently, if we determine A, on the supposition that the

terms involving f destroy each other, we shall have

^-iM-~U' ^'^ ^-"1:2 + 1:23^ ~ 3-

t* . 1
If t — ^ + A^ is put for X, we shall in like manner getA =-

;

i> O

and so on. Hence, we shall have
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«'=^ -3 +^- Y+,
&c («);

which is a very useful formula for finding the circumference

of a circle.

Thus, if X is the numerical value of half a right angle,

dince X = x', we have

'
• J ^ , sin

«

sm X — cos X, and, of course, t = = 1

;

cos X

consequently (since ^ expresses the numerical value of a

right angle), by putting 1 for t and j for x, we shall have

1=^-3+5-7+'^°-
Again, if x is one-third of a right angle, we shall have

x' = 2x, and cos x = sin as' = sin 2a! = 2 sin x cos x,

or sin cb = -, and thence cos x = ^

;

consequently, from t = we get ^ = —
COS 3/ __ a/O

From the substitution of this value of t in (<?), we clearly

^^* 6 = 4/3 (^ ~ O + 5:3^ ~ 7:3'
"^

9J^ ~' ^°7'

which will enable us to find the numerical value of :r to any

required degree of exactness.

The value of n to eight decimal places is easily found to

be 3.14159265 ; which is clearly the numerical value of two

right angles, or the semicircumference of a circle whose

radius is the unit of length ; consequently, the product of

TT and K, the radius of any other circle, gives Rtt for the

length of the semicircumference of the circle whose radius

is R
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For series of more rapid convergency than the above, the

student is refeiTed to page 70, volume 1, of Lacroix's " Calcul

Differentiel," and to page 797 of Rutherford's edition of

" Hutton's Mathematics."

(9.) We will now show how to find the differential of an

arc regarded as a function of its sine, cosine, etc.; which are

sometimes called inversefunctions.

1. If sin 3 = y and cos 2 = », we get from what is done

at page 58, cos zdz= dy and sin zdz = — dx, or

(since sin'' s + cos°z^^V)dz= —~-=^ and dz=^ ,
;

and in like manner, if we put tan z=t and cot z = t', we

get, from page 59,

—T- = dt and . . = — dt';
COS"' z sin'' z

or dz^cos'zdt and dz=^ —sin^sdt',

which are equivalent to

dt , , dt'
dz = r; and cfe = —

1 + f 1 + r'

Also, if sec s = « and cosec z = «', we get, from what is

shown at page 61,

tan z sec zdz = ds and cot z cosec zcb = —ds';

which, from tan z = Vs^ — 1 and cot z = Vs'^ — 1, are

reducible to

dz = —
.

and dz =

In much the same way, from page 61, if we put

versin s= 1 — cos s= v and coversin z —1 — sxa.z = v',

we get

sin zdz = dv and cos sds= — dv',
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, dv , - dv'
or dz = —.—- and dz=.

sin s cos s
'

consequently, since cos s = 1 — « and sin 3= 1 — v\ we get

J dv , ^ dv
dz = and ds=

V2v — v" V2v' — v'^

2. It is manifest that the radius of the arc in the preceding

formula is 1, or unity,- which may easily, from the principles

of homogeneity in the members of the equations, be reduced

to an arc whose radius is r, after the following manner:

Thus, for y^ and x' in the first two equations, write

^ and —^ and they become

, dy , , dx
dz = ——— and dz =/^ lATl

which are easily reduced to

rdy , , rdx
dz= — and dz= ;

and in like manner the remaining equations become

r^dt , r'dt'
dz =

, :̂ ,
dz=

r^ds
'

, i^ds'
dz = —:= , dz= —

rdv , rdv'
dz = —

:

—
, a^ = —

V2ru — v" V2rv' —v'^

which are adapted to the arc z whose radius is r.

Remarks.—1. Differentials that are not of the preceding

forms, can often be reduced to them. Thus

dx . • 1 i .
*

is equivalent to

VW^^Gx' ^ ^

g^^iy
_^
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whicli is the differential of a circular arc whose radius is

5
J and sin = aj divided by 5. In like manner tte differen-

-dv
tial -i

—
'-YT-^ is reducible to —-. j5—r- ; -wHcli is the dif-

ferential of a circular arc whose radius = 1 and tangent

= - V, divided by ab.

2. In like manner, differentials can often be reduced to

those of known logarithmic forms. Thus the differential

-2

—

-^ is reducible to the known logarithmic differentials

dx — dx , 2acte
H , and

a+iB a — X a? — a'

. , , ,
dx dx

IS equivalent to
,^ x — a X + a

which are differentials of well-known logarithmic fonn?.

(10.) We will conclude this section by noticing some of the

more important properties of the expressions

e'^~^ = cos a; + sinjK V—1 and e~^'*^= cosa;— sina; V — 1,

or their equivalents

cos X = s and sm x
2 2v-^n

'

see page 53.

It is manifest that for the first two of these forms, we may

take e* ^
*'-

* = cos a; ± sin a; V" — 1 ; by using the upper

signs (in the ambiguous signs) for the first, and the lower

signs for the second.
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If mm is put for a;, we stall have

or, because

g±mx irri _ (g±x vcrTjm _
(^jog a, J. sin a, \/ _ i)m^

we shall get

(cos » ± sin a? -/^l)" = cos mx ± sin mx V—1 .

.

. (_/)

;

which is called De Moivre's Formulm.

Expanding the first member of this equation according to

the ascending powers of ± sin x V — 1 by the Binomial

Theorem, and equating the real and imaginary parts of the

members of the resulting equation, separately, we readily get

m (m—V) „ ., . „

cos ma;= cos*" a? — ——^

—

- cos"'""'a!sm^a!

and

(».-l)(»-2X»-j)(»^-^ ^ ^^^_. ^,^__ j^\
2. 3. 4. o /

If in these equations we successively put m = 2, m = 3,

&c., we get

cos 2x = cos^ X — sin^ x = cos^ a; — (1—cos'' x) = 2 cos^ a; —1,

sin 2a! = 2 sin a; cos a),

cos 3a; = cos^ a;—3 cos as sin^ x = cos' a; — 3 cos a; (1— cos" x)

= 4 cos' X —S cos a?,

sin 3a! = 3 sin x cos'' x— sin' a!= 3 sin a:— 4 sin' a!,

and so on.

, (m — l)(in— 2) „ a • o
sinrnx^m, sina; (cos"-'* — ^ ^^ cos""-' sm^ x
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If in the expressions for cos x and cos mx, sin x and

sin mx, we put &'*'~^ —
y, and of course e-='*'-~* = -, then

1 « » ,
1

we get 2cosa! = y + -, 2 cos ma; = y" + —
_,

y y

2 sin a; V^^ = y , and 2 sin mx V—\ = y" — -s;.
if if

Supposing TO to be a positive integer; by raising the

members of 2 cos a; = y + - to the mth power, and uniting

the first and last terms, the second and last but one terms,

and so on ; we shall evidently have

2-" cos- x={y^ +^+ m (y--' +^)

If m is an odd number, since y" ^—^ = 2 cos mx,
if

y"""^
"I sr:;3

= ^ cos {m — 2) x, and so on, we readily get

^ , , r.^ 'm {in — 1)
2"*"^ cos ma; = cos ma; + m cos (»i. — 2)a! -\ ^:j

—
^
—

'

cos (m — 4) a; +, &c., until the number of terms = —^—

.

When m is an even number, we have 2"*"^ cos"'a! =
, _. m,{m — 1)

cos mx-\-m cos {jn — i)x+ —y—

—

'- cos (m— 4)aj +, &c,,

171

until there are -^ terms containing cosines ; to which must

^ OT(m-l)x...x(y + l)

be added the term -^

2 . „ m,
^•2x xy
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If in ttese formulse we put 1, 2, 3, &c., successively, for

m, we readily get the following

TABLE.
1. cos X = cos a;;

2. 2 cbs^ X = cos 2»+ l

;

3. i cos' aj = cos 3a3+ 3 cos x
;

4. 8 cos'' X = cos 4a5+4 cos 2a3+ 3

;

5. 16 cos' 35 = cos 5iB+ 5 cos 3a;+ 10 cos a;

;

6. 32 cos' a! = cos 6a!+ 6 cos 4:0?+ 15 cos 2a;+10

;

7. 64 cos' a; = cos 7a?+7 cos 5a;+21 cos3a;+35cos x;

8. 128 cos^ X — cos 8a;+8cos 6a;+28 cos 4a!+56 cos 2a;+35

;

and so on, to any extent that may be desired.

If m is an even number, and the members of

2 sin X V—1 = y

are raised to the mth power, then, by proceeding as before,

we shall clearly have

± 2"*"^ sin"" a; = cos mx — m cos (m — 2) a;

m, (m — 1) . ..
5

-] —-^—- cos (tw — 4) a? — , &c.

;

noticing, that + must be used for ±, in the first member of

the equation, when m is exactly divisible by 4, and that —
must be used when it is divisible by 2, or not divisible by 4.

')7l

It may be added, that there will here be -^ terms containing

cosines ; together with the term

±o
»«. (m — 1) X . . . . X (y + l)

1 .2x x^
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in wtich + must be used for ± when m. is divisible by 4

;

and wben m is not divisible by 4, "we must use —

.

When m is an odd number, by proceeding as before, we

shall have

± 2"""* sin"* aj = sin mx — m sin (m — 2) a?

m (m — 1) . , .. „

H ^—n

—

- sm (m — 4) a; — , &c.,

until the number of terms equals —-—
; noticing, that +

must be used for ± in the first member of the equation,

when wi — 1 is divisible by 4 ; and that — must be used in

the contrary case.

If 1, 2, 3, 4, 5, &c., are successively put for m in the pre-

ceding formulaB, we readily get the following

TABLE.
1. sin a? = sin a?

;

2. —2 sin^ X = cos 2a;— 1
;

3. —4 sin' X = sin 3a;—3 sin x
;

4. 8 sin*X = cos 4a;—4 cos 2a;+ 3

;

5. 16 sin° X = sin 5a;—5 sin 3a;+ 10 sin a;

;

6. —32 sin* a; = cos 6a;— 6 cos 4a;+15 cos 2a!— 10;

7. —64 sin' a; = sin 7a;— 7 sin 5a;+21 sin 3a;— 35 sin a;;

8. 128sin*a; = eos8a;—8cos6a;+28 cos 4a;+56 cos 2a;+35;

and so on, to any required extent.

Resuming the simultaneous equations 2 cos x = y -{—

,

1
^

and 2 cos mx = y"" -\—-, from p. 76 ; it is easy to per-

ceive thiit they are equivalent to the equations

j^— 2y cos a; + 1 = 0, and y"" — 2^"* Cos mx + 1 = 0.
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Because ttese equations are coexistent, it is clear that the

first is a quadratic factor of the second.

If we have an equation of the form

y2m_ 2y"'cose + l =/"'—%"' cos (e+2M7r) + 1 = 0,

since cos = cos {0 + 2w7t), n being an integer ; then we

shall have y'-2ycosJ—^— j + 1.

for the general representative of its quadratic factors. Put-

ting successively, 0, 1, 2, 3, &c., to w = m — 1 for n in the

quadratic factor, we clearly get

j,2m _ 2y"> cos e + 1 = (/ — 2y cos hi)

X
(f- 2y cos ^±^ + l) X [f - 2y cos ^^^ + 1), &c.,

to m factors. It is evident that these factors are different

from.' each other, aud that they are the only quadratic Vic-

tors which the equation can have ; since /?. == m, n = wi + 1,

7i = m + 2, &c., will merely give repetitions of the factors

found.

Thus, the quadratic factors of

2^a_2^+l = 2/'-2y»x| + l=0,

since cos = ^^ or = 60°, will easily be found to be

f- 1.8793852 . y 4- 1, f- 1.5320888 . j^ + 1,

and 2/^-0.3472964 y + 1;

and in the same way, since

y« +/ + 1 = 2/=- 2/ x -
I
+ 1 =

gives cos e = — H , w^e readily get d = 120°, and thence we
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shall have j^ - 1.5320888 . y + 1, f — 0.3472964 . y + 1,

and y^— 1.8793852 . y + 1, for the quadratic factors.

If we have an equation of the form ^^— 2ay'" + 1 = 0,

in which o is numerically not greater than unity, it is clear

that it may in hke manner be resolved into quadratic fac-

tors. Consequently, if each quadratic fector is resolved into

its two simple fectors, the roots of the proposed equation

wiU be known.

If a = 1, the equation becomes

2^-_2y» + l = (y'»-iy = 0,

having ip
— ly cos h 1

for its general quadratic factor, since cos Iwn= 1. Putting

0, 1, 2, 3, .... to TO — 1, inclusively for n, the particular

quadratic fiictors will be found to be

2^_2y + l=(2^-l)^ ,/_2ycos^+l,

jr— 2y cos 1-1 . . . . to 2/ — 2y cos -^^ — + 1,

for the last factor. Because

2 (to — 1) 77 „ 27T

7n TO

it is clear that

(2m— 1) 2tt
cos -'tt = cos ,

TO TO

and, in like manner,
2 (to— 2) 7t 47r

cos —^^ '— = cos —

,

TO to'

and so on ; consequently, for

. „ 2 (to — 1) TTy _ 2y cos -L~ + 1,
iiti

277
we may write y^ — 2y cos — + 1

;
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for ^_2,cos2-(^^+l,

we may write y^ — %y cos —• + 1,

and so on.

Hence, we shall have

(2/"- ly = (y - 1)= . (y» - 2ycos ?^ + l)°

X ^y^'- 2y COS — + 1
j , &c.,

to —^r— factors, when tti is an even number ; and to—-—
u 2

factors, when m is an odd number. Consequentlj, extract

ing the square roots of these equal products, we shall have

r-i=(y-i) •

{f-'^y
«°«^ +

1) • (2^ - 2y cos ^ +
1

)

&(. to factors when m is even, and to factors

when m is an odd number.

Thus the factors of y'— 1 = 0, are

O— 4-71-

J,
_

1, y=-2y cos-g- + 1, y" - 2y . cos y + 1, and y + 1

;

and those of 2/° — 1 = 0, are

y_l,y2_2ycos-g- +1, and y'' — 2y cos y + 1.

In like manner, if a = — 1 , our equation becomes

y="" +2^"" + 1 = (y"* + 1)= = ;

whose general quadratic factor is

2?l TT + IT

y»+2y.cos-^-+ 1,

since cos (2w7r + tt) = — 1.

4*
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Putting 0, 1, 2, 3, to 9n, — 1 inclusive, for 7i, and tlieii

proceeding as before, we get

n 2tv
t/ — 2i/cos hi, V^ — 2y cos hi,

y^ - 2w cos— + 1, toy^— 2y cos -^^ '-—^^- + 1.

Because

2(m — l)7r + 7r_ tt 2(m — 2) tt + tt _ 2t:

m mm, m
and so on ; tlie factors may .clearly be written in tbe forms

(f - 22/cos ^+ 1
j , |y5 - 2i/ cos ~ + 1

j ,

(57r \^

.y^-2ycos- + l),

to — factors when wi is an even number and to—^
— fac-

Z 2

tors when wi is an odd number.

Hence, as before, the factors of y"* + 1 = 0, are expressed

by y^ — 2y cos hi, if — 2y cos — + 1, and so on, to
7n m

-^ or —-— factors ; accordingly, as m is an even or an odd

number.

Thus, the factors of 2^' + 1 = 0, are

f - 2ycos ^ + 1, y2 ^. 2y cos -^ + 1 - y" + 1,

and y' — fjycos -3- + 1

;

D

while the factors of y* + 1 = , are

y' — 2y cos
g + 1, y^ — 2y cos Y + 1. and y + 1.
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It results from what has been done, that any equation of

the form x^ ± a" = 0, can be resolved into factors. For put

as" = a"y" , and the equation is readily reduced to the equiv-

alent equations y" -f 1 = and y" — 1 = 0, whose roots

can be found as before.

It is manifest that any equation of the form

ar"" — Saa!"* + 5 = 0,

can be reduced by the rules of quadratics to equations of the

preceding forms, and their roots may be found, as before.

It may here be proper to notice some interesting proper-

ties of the circle, that result from what has been done

c

A/

Thus, let AA'B, &c., be the circumference of a circle

whose center is O, and radius E ; then, supposing the circum-

ference is divided into any number m of equal parts AB, BC,

&c. ; if from any point P, in the plane of the circle, the

straight lines PA, PB, PC, &c., are drawn to the points of

division of the circumference, we shall have the equation

OP^™ _ 20?"" X OA" cos m (AOP) + AO^"*

— y^rn _ 2ym COS + 1
;

where we represent the radius E = AO by 1, or unity, PO
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by y, and tlie angle POA by— . We also have from the

triangles POA, POB, POC, &c.,

AP' ^y" — 2y cos hi,

BP= = j^ _ 2y cos POB + l = f-2yco& 1±_?!I + i^

PC= = 2/" - 2y cds—— + 1, &c.

;

consequently, agreeably to De Moivre's Property of the

Circle, we shall, from what is shown at p. 79, have

j^"> _2y"'cos(?+l = PA=xPB^xPC=x, &c.,

to the square of the line drawn from P to the last point of

division of the circumference.

If the angle POA = O, or A falls on OP, the preceding

equation becomes

y2m _ 2y"> + 1 = {y^- 1)= = PA= X PB'' X , &c.,

or ± (y'»-l) = PAxPBxPCx,&c.

If the arcs AB, BO, &c., are each bisected in A', B', &c.,

then, since the lines drawn from P to all the points of divi-

sion will be doubled in number, the preceding equation will

become (for all the points of division of the circumference),

± (^-"' _ i^m) = PA x PA' X PB x PB' X , &c.,

= ± (y"- 1"") X PA' X PB' X , &c.

;

which gives

•^

,„_y,, = 2/'"+!"', or y^+l = PA' x PB' x PC x , &c.

:

noticing, that the equations ± (y™— 1) = PA x PB x PC x

,

&c., 2/"* + 1 = PA' X PB' X PC X , &c., are called Cotes's

Properties of the Circle; see pp. 32 and 33 of Young's
" Differential Calculus."
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Eemarks.—There are one or two singular properties of

cii-cular functions that it may not be improper to notice in

this connection.

Thus, resuming the equation e^^-^ = cos as + sin a; V—1,

from p. 53, and putting x =-, we have
it

" ij—

r

.
T

e^ ~ —V—1, or e~^= {V^)

which, expanded according to the ascending powers of ^, by

(6"), given at p. 51, gives

for one of the properties.

And by taking the hyperbolic logarithms of the members

_ir _ -I

of e 2"=: (V—iy-', we have - ^ = V~l x ^ log - 1,

or TT = — -j/ — 1 log — 1, for the other property : noticing,

that TT = the semicireumference of a circle whose radius = 1,

and that e stands for the base of hyperbolic logarithms. See

pp. 33 and 34 of Young's " Pifferential Calculus."



SECTION HL

VANISHING FEACTIONS.

(1.) "When the numerator and denominator of a fractional

expression are each reduced to naught or vanish, by giving

a particular value to a common variable, the expression is

called a vanishing fraotion.

Thus, —7T J-
is a vanishing fraction : since, by putting

Cb 12/ ~"~ Ct J

a for X, it is reduced to , „ 5r = 7;. It is clear, from
a (a?— a')

oc^—a^ _ {x — a) (le'+ axi + a^)

a{x'—a')~~ a{x— a){x + a) '

that it is reduced to the form ^, by putting a for a? ; since

the factor x — a (which is common to the numerator and

denominator) becomes a — a = 0.

It is hence evident, that vanishing fractions result from
the vanishing offactors that are common to their numer-

ators and denominators.

(2.) Because the quotient arising from any division is man-

ifestly independent of any factors that are common to the

dividend and divisor, it is clear that by erasing such factors

from the dividend and divisor (or -dividing them by their

greatest common divisor) before the particular value is put

for the variable, and then putting the particular value in the

result, we shall get the true value.
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Thus, since 4^- = (^-=^^+^^+_«l
a {x^— a?) a(x — a){x + a)

IS reduced to —-,—;—r— bj erasing the factor x—a from

its numerator and denominator ; then, by putting a for x in

x^ -\- xa + a^ 3
^ /^ ,

^ , we get, after a slight reduction, ^ for the true

value of the proposed fraction, when a is put for x in it.

(3.) If for generality, we use =^7- to stand for any vanish-

ing fractional form, which becomes -:r when a is put for so
;

then, if A denotes the true value, we shall have ^ = A

.

Yx
To find A, we may clearly put =^^7— = A, or Fa!=:A x Wx

;

then to eliminate the vanishing factor, when it has neither a

negative nor fractional exponent, we may differentiate the

members of Fa? = A x F'sj on the supposition of the con-

d¥x
stancy of A, which will give A = „, ;

and if the right

member of this for a; = a is reduced to t^ ,
we may evidently;

cP¥x
as before, put A = „, ,

and so on, until a fractional form
CL j^ SC

will finally be obtained, in which both the numerator and

denominator will not vanish when a is put for x ; which will

clearly be the true value of the proposed fraction.

Thus, to find the true value of the fraction —j

—

„ „ . ,

when ce = 1 ; which reduces it to the form ^ .
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Here, Fa;, F'x, and a, are represented by

a^ — 3x + 2, 3a^ — 6x^+3, and 1

;

consequently, from

d{a^—3x + 2)= (3ar' - 3) dx

and d (Sjb* - ear* + 3) = (12»' - 12x) dx,

^e have A =
i|j£i|^

= ^ when x^l.

Hence we have

eg' (g!^ - 3a! + 2) _ d (3a^ — 3) _ 6a; .

(?(3a!* - 6*^ +. 3
~ d (12a!»— 12a;)

~ 3601" — 12 '

/» -I

which becomes 777; --r- = -.-
, when 1 is put for x, which is

do — 12 4

the true value of A, that of the proposed fraction, when 1 is

put for a; in it.

Fa;
(4.) Still using =7- to represent a fractional form that be-

Ju X

comes -^, when a is put for x ; then, the vanishing factor that is

common to the numerator and denominator, whatever may
be its nature, can be eliminated from the fraction after the

following manner

:

Thus, put a + A for a; in Fa; and F'a;, and expand these

functions by Taylor's Theorem, or in any other way, accord-

ing to the ascending powers of A ; and they (by omitting the

vanishing terms) will evidently be reduced to the forms

AA" + Bh''+ , &c., A'A<"+B'A" +, &c. Hence, we shall have

Fa; _ F(a-f A) _ AA" -f BA^ +, &c.

F'a;
~"

F'(a + A) ~ A'A"' + B'A" +, &c.

'

and hence it is clear that -j-, h"-"', when a is put for x, ex-

presses the value of the proposed fraction. Thus, if a is
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greater than a', it is clear that the value of the fraction

equals 0, since -^, h"-"' — 0, when A = ; when a -- a', the

value of the fraction is -r-, , since a — a'=-^ reduces A"-?'"'A
to A" = 1 ; and when a' is greater than a, the value

A A
-^, A"-"' =

^ _^ = infinity when A = 0, on account

of the infinitesimal divisor A"'-" in -r-rr-,—

.

A'A"'-"

Hence, a fraction whose numerator and denominator are

reduced to naught by a particular value (a) of the variable,

may be found by the following

EULE.

1. Divide the differential or differential coefficient of the

numerator, by the differential or differential coefficient of the

denominator, and substitute the particular value of the vari-

able in the result ; then if the numerator and denominator

of the fraction thus obtained are not both reduced to naught,

it will be the value of the vanishing fraction.

If, however, the numerator and denominator of this frac-

tion vanish ; then we must proceed with the second differen-

tials or differential coefficients of the numerator and denomi-

nator in the same way as before ; and so on, until a fraction

is obtained whose numerator and denominator do not both

vanish for the particular value of the variable ; which will,

of com-se, be the correct value of the vanishing fraction.

2. If in the preceding process any differential coefficient

becomes infinite, for the particular value (a) of the variable

;

then, we must, as at p. 88, change the variable into a 4- A, in

the numerator and denominator of the proposed fraction, and



90 EXAMPLES.

develop, by particular processes, the numerator and denomi-

nator into the forms AA" + BA'+ , &c, and A'A'"+ B7t'"+ ,

&c., arranged according to the ascending powers of A; then,

as at p. 88, the true value of the vanishing fraction will bo

A A
expressed by -j-, A"""', when A = ; which equals 0, -v-, , or

infinity, accordingly as a — a' is positive, naught, or negative.

Eemakk.—Examples that do not fall immediately under

this rule can often be reduced to it, and thence their values

found,

EXAMPLES.

1. The value of ^—j^ s : , when 1 is put for ce,

ir — b^x — ar + ar
^

c^— a^ T ,, , „ 3a^— 2ax— sty' ,

is „
'

T-a ; and the value oi —^ —=- , when x = a,

'' - 5-

o m . -1 1 , r Va' — Sax + 20? .

2. To find the value of
,

— , when x — a.

Vx» - a?

Put a + A for x, and the expression is immediately reducible

for the answer.

Otherwise. Bepresenting the sought value by A, we

easily get a^ — Sax + 2a? =^ A?{a? — a^),

which gives 2x — a = A}{a? + xa + a?),

by erasing the factor x — a from its members ; consequently,

putting a for x, the answer is A =——=.

3. To find ,.. — , when 1 is put for x.
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Putting 1 + A for x, the expression reducesto

(3A + 2hF)i _ 3A + 2A^)^ _ /27A^ +, &c.\^ _
(3A + 3A^+ A'f

~
(3/t + 3A^ + h'f

~
I 9A= +, &c./ ~

(3A ±, &c.)^;

wticli, by putting A = 0, gives naught for the true value

of the proposed fraction, when 1 is put for x.

4. To find the value of -5——„ -=
, when x = a.

a' — ar a — x

When a? = a , the dividend and divisor are evidently un-

limitedly great, instead of being infinitesimals, as in the pre-

ceding examples.

Performing the division before putting a for x, we get

1 ^ 1 _ 1 .

d' — ar ' a — x a + x '

consequently, putting a for x, the answer is — .

X 1
5. To find the .value of the difference — —

, ,

X — 1 log X

when x=^ 1; the logarithm being hyperbolic.

Reducing the terms of the proposed expression to a com-

1 p ,• ccloga; — (a? — 1) ,.,
mon denommator, gives the traction —-^——

-^^ ; which° {x— 1) log X

is under the form of a vanishing fraction.

Dividing the second differential coefficient of the numera-

1

tor of this fraction by tbat of its denominator gives -z. r-

- + —
X X'

for the quotient ; which, by putting 1 for x, gives ^ for the

answer.
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7r

6. To fiad the value of the product (ir — 1) tan ^ x,

when 1 is put for x.

When as — 1 = 0, tan - as becomes tan - = infinity ; con-

sequently, one of the factors equals 0, while the other is

infinite.

Since tan „ a; = , the product becomes
,

cot y COt-^-

which is a vanishing fraction ; stuce its numerator and denom-

inator both vanish when a;^ 1.

Consequently, dividing the differential coefficient of the

numerator of this fi-action by that of its denominator, we

2 X sm-" t; X

get , which, byputting 1 for a;, since sin ^ '—
1,

2
gives for the answer ; and in much the same way, the

tan - X

value of , when a; — 0, is infinite.
X '

'

7. To find the value of — -. , when a; = 0.
a? — sm aj

From (5") page 51, we have

= l + a; +

consequently,

which, by putting a; = 0, gives 1 for the answer.

8. The values o

and 1, are 1 and 0.

e-^l + x+ ~+, &c.,and e»"'===l+sina5+ ^^^ +, &c.

;

(e' - ^'-) -- (a> - sin a;) = 1 + ^^^ +, &c..

8. The values of and -^ when x =
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y. io find the value of -. r , when a is
X* — a*

put for X.

Put a + h for x, and the knswer will be found to

be -J- , or 5a more nearly.

10. The values of ,— and 5 r , when 1

and a are put for aj, are 1 and

x-1
B_

2a

11. The value of -;——-, —

5

j , when x = a, ia
a* — 2a?x + 2aar— x*

tmlimitedly great ; and that of

when K = a, is (2a)*.

12. The values of

a!''+i— a» + i ar"— 5aa! + 4a^
"5^=^^="^^^ 3a^-7aa! + 4^'

when a is put for x, are a, and 3.

-I o rrn. 1 „ tan SB — sin aj , a • ^
13. The value of ^ , when aj = 0, is jr

.

OF 2

For most of the preceding examples the reader may be

referred to pages 60 and 61 of Young's " Differential Gal-

culus."



SECTION" IV.

MAXIMA AND MINIMA.

(1.) A VALUE of a function greater than the immediately

preceding and following values is called a maximum, wliile

a value less than those values is called a ininimum.

Thus, since three successive values of a function of any

variable, ais x, may clearly be expressed by the forms

F (» — A), Faj, and F (a? + A) ; Fa; will be a maximum or

mininum, accordingly as it is greater or less than each of

the other values, from any finite value of h (however small),

to A = 0.

(2.) Hence, supposing the functions F (a;— A) and F (a? + A)

to be converted into series arranged according to the ascend-

ing powers of A, they may clearly be expressed by the forms

Fa; + A ( - A)" + B ( - A)' +, &c.,

and Fa; + A (A)" + B (A)' +, &c.,

in which A, B, &c., are supposed to be iadependent of A,

while the index a is less than 5, i less than c, and so on

;

these series (like the functions they represent) being each

less or greater than Fa; from a very small value of A to

A = 0. It is clear that these expansions may be written in

the forms

F(a!-A)=:Fa!+(-A)'' [A+B(-A)»-'- +C(-A)=-''+,&c.J,

and F (a; + A) = Fa; + A" [A + BA'-" + CA°-" +, &c.J ;

in which the indices i — a,o — a, &c., are clearly aU positive.
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If A is different from 0, it is clear that so small a finite

value may be given to A, that A shall be greater than the sum

of all the other terms within the braces, in the "expansions

;

consequently, when Fx is a maximum or minimum, the

terms A( — A)" and Ah" must accordingly, each be negative

or positive. Hence, a must evidently be either an even in-

teger, or a vulgar fraction which (in its lowest terms) has

an even integer for numerator and an odd integer for its de-

nominator
; and A must be negative or positive, accordingly

as F» is a maximum or minimum.

(3.) Regarding x and h as indeterminates, we may, by

Taylor's Theorem for the above formulas, write

,, ^ d(Fx), d%Fx)h' d?(Fx) A'

and

,, ^ d(Fx) - d'iYx) k' dHFx) h'
Yix + k) = F. + -i^-i A + ^^ j^ +^^^ +, &c.

To reduce these expansions to the preceding conditions, we

must put the coefB.cient of h equal to naught, or assume

the equation ' — 0; and the expansions will be re-

duced to Y{x-h = Fa,+ -^-^^ yj^^ +, &c.,

and F{x + h)= Fx + -^ 12+'^'*^^'''^)
172:3 +' ^'''

which are clearly of the requisite forms, since A^ is the

lowest power of h, in them.

When a function is a maximum or minimum, any con-

stant factor or divisor of it may be omitted, and vice versa.

Also, any positive power or root of a maximum or mini-

mum, must also be a maximum or minimum. And the re-
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ciprocal of a maximum is a minimum ; and that of a mini-

mum is a maximum.

(4.) It is manifest that the maxima and minima of a fanc-

tion of a single variable may be found by the following

KULE.

1. To find when y, a function of x, is a maximum or

minimum
;
put the first differential coefficient -^ = 0, and

find the real roots of the equation. Substitute each real

root in -^ , -^4 , &c., until the first which does not vanish is

obtained ; then, if it is of an odd degree, it can not corre-

spond to a maximum or minimum of y ; while if it is of an

even degree, it will correspond to a maximum or minimum

of y, accordingly as its sign is negative or positive.

2. To find other maxima, and maxima that may result

from the unlimited increase of H^, we put -^ = infinity;

or, which comes to the same, we assume its reciprocal

-5- = ; and find the real roots of this equation. Then, the

roots which, put for on in y, make it greater than its adjacent

values, will give maxima ; while those wtich make y less

than its adjacent values, give minima : noticing, that those

roots which do not make y a maximum or minimum, can not

correspond to the maxima and minima of the question.

3. If any real root of y- = 0, when substituted as di-

rected in 1, makes the first differential coefficient, which does

not vanish, infinite, then the true value of the term must
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be found by the ordinary processes of algebra, and thence the

corresponding maximum or minimum may be determined.

EXAMPLES.

1. To find the maximum and minimum of

y = 2a!'— 9a!^ + 12a; — 7.

Here -^ — becomes ar"— 3a5 + 2 = ; whose roots are
ax

cPx
a; = 1 and x = 2. Substituting a; = 1 in -y-^ = 2a! — 3, it be-

comes — 1, which being negative shows that if we put 1 for

X in y, we shall get its maximtlm. Also, puttrog 2 for a! in

-^ = 2x— S, it becomes -t4 = 1 ; which, being positive,

shows if we put 2 for a! in y, we shall get its minimum

value.

2. To find the minimum value of y = a;" — (a + h)x+ ab.

Here -^= becomes 2x— {a + h) = 0, which gives

X = —a~i ^^<i T2 = 2 ; consequently, putting —^- for x

m y, we have y= — \"^) ' ^ °i™™i^™-

3. The minima values of

y= 33= — 2aa! + 0? + 1 = {x — of + 1, and y = {x— of,

are evidently y = 1>, y = ; while y = {x — of, admits of

neither a maximum nor minimum.

4. To divide 2m into two parts, whose product shall be a

maximum.

Because m + x and m — x when added equal 2m, they

raay clearly stand for the parts ; consequently, the product

of the parts is expressed by (w + a!) (m — x) — m?— a?,

5
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whicli is clearly a maximum wlien a; ^ 0, which shows that

the parts are equal

Eemakk.—^It is hence easy to perceive that the number

nm, when divided into n equal parts, gives to" for their

maximum product

5. To find the maxima and minima of y=a±,(x — J)*

Here, we have -^ = ± ^r (x — 5)"*= ± o r > which
dx 3 ' 3

(a, _ 5)i

shows that x = i makes -~ unlimitedly great, or reduces

-3- = - {x—J>f to naught, agreeably to 2 of the rula

By putting x = i — h, we evidently have y = a ± /r
;

which by (2.), p. 94, makes y = a, a maximum when — is

used for ±, and the reverse.

6. To find the maximum and minimum of y= a ± (x—b)'.

^-- l=±^^-^)* andg = ±|(.-5)-%e

get, by putting -^ = 0, « = 5, which makes -j^ = infinity.

Hence, by 3 of the rule, put a; = 5 + A, and we get

y ^= a ± (hy ; which shows that by using ~ for ±, x = b

makes y = a, a maximum, and the reversa

7. Griven y = Va^x — ax' to find when y is a maximum

or minimum.

if
Here we easily get — = a^x — a^, for which we may evi-

dently take u = a^x — ar', and, agreeably to the remarks at

the bottom of p. 95, find the maximum and minimum of u.

From -=- = 0, and -^-5 = — 6a!, wegeta; = -—
;; and

dx oar ' o ^g
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^ = —
773 ;

and by putting — for x in -^-j, we have a

negative result; wMch shows that x — \ makes y a

maximum
: noticing, that a; = — makes y imaginary.

8. To solve the equations a; + y + s = «, a? + y^ = 1^,

and xy^ — a maximum or minimum ; or to find x, y, and s,

fi'om the equations and the maximum or minimum con-

dition.

Putting, according to the second and third conditions,

their differentials equal to naught, we evidently have

xdx + ydy — 0, and ^xydy + y'dx = ;

consequently, since the first of these gives ydy = — xdx,

the second, by substitution, becomes (y^ — 2a?) dx = 0, or

y^ = 2x\

Hence, the second of the proposed equations, by putting

2a? for t/^, is reduced to 3x' — V; whose solution gives

6 , I
X = -—^ and a! = — —^ ;

4/3 ^ 4/3

'

noticing, that x =—- makes xy' a maximum, and x = —-
yo |/3

makes it a minimum.

Having found x, we easily get y from x^ + y^ ^^ V, and

thence z will be found from x -\- y'+ z^= a.

Eemaeks.—1. It is hence easy to perceive that we may
proceed in much the same way to solve all questions of an

analogous nature.

2. The preceding solution may be modified as follows

:

From the second equation we have y''= V— «?, which reduces

the maximum or minimum condition to the maximum or

minimum of ¥x — a?; consequently, representing this by u,
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we have to find x sucIl that u = V^x—af shall be a maxi-

mum or minimuTQ.

Hence, from ^- = 0, or J' — 3ar' = 0, and ^-s = —6a!,

we get the same results as befora

9. Given a? +y + a = a, and a;" y" z",

or m log a; + w log y + p log s,

a maximum, to find a;, t/, and z.

By taking the difierentials, we have dx + dy + ds ^0,

, - , - mdx ndii pdz
or dz^ — ax — dy, and 1 + *-— = ;^' X ^ y ^ z

consequently, substituting the value of dz, we have

mdx pdx ndy pdy
X z y 2 '

which, on account of the arbitrariness of dx and dy, is clearly

equivalent to the equations

m p . m X . n y= 0, or — = - and - = -.
X z p z pi z

Hence, to the sum of these equations adding the identical

equation - = -, we have^ p z

m + n + p X + y + z a an— = = - or z=
p s z m + n +p

and thence from x =— and y = — , we readily get

a7n . an
and ym + n +p m + n -^p

To perceive that the preceding results satisfy the required

conditions, the reader may consult Lacroix, " Calcul Di£."

voL i, p. 380.
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10. To find X, such that -5 5 shall be a maximum.
X' + 6'^

According to what is stated at p. 95, the question will

be solved by making the reciprocal of the proposed ex-

x^ + (^ <?
pression, or = a; H— , a mmimum.

X X

Because a; x — = <?, it is clear that the minimum of
X

<? . . . ' &
03 H is found by putting a; = c ; which gives x:c\:c: —

\

consequently [see my Algebra (24.), at the top of p. 197],

we must have x {— greater than c + e^=2c, it x and — are
X X

unequal. >

11. Given the angle A and the position of the point P
between the lines that form it, to draw the right line DE
through P such that the triangle ADB shall be a minimum.

Through P draw right lines parallel to the lines that form

the given angle and meeting them in B and ; then, DPE
being drawn to cut off the minimum triangle, the triangles

PBD and PCE are evidently equiangular and of course sim-

ilar, from well-known principles of geometry ; and the area

of the parallelogram PBAC is evidently given, from the

data of the question,

Eepresenting PB = AC, PC = AB, BD, and CE, by the

letters a, b, x, and y, we get &om the similar triangles the pro-
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portion x : a :: J : y = — ; consequently,

AD=x + i and AE = a + y—a+— — -^ ^
,^ X X

and thence we liave tlie area of the triangle ADE expressed

by

AD X AE X sin A. a{x+bf a/ _, J% . .

2

as is evident from the well-known expression for the area of

a triangle in terms of any two of its sides and their iuchided

angle.

From the preceding expression, since sin A, -
, and b are

given, it clearly follows (from principles heretofore given),

J" .

that the triangle will be a minimum when x -]— is a mini-
OS

mum.

Hence, from the solution of the preceding example, we

must have a; = 5, or BD = B A, from which it clearly follows

that making BD = BA = i, and drawing DPE, DBA will

be the required triangle ; and P bisects DE.

12. " Given the sum of the base and curve surface of a

right cylinder, to find when its sohdity is a maximum."

Let r and k stand for the radius of the base and height of

the cylinder, and n = 3.14159, &c. = the semicircumference

of a circle whose radius = 1 ; then, if A stands for the sum
of the base and curve surface, we shall, from the known prin-

ciples of mensuration, get 2r7rA + t^n = A and rrr/i = s =
the solidity of the cylinder =^ a maximum. From these con-

ditions, we readily get 2s = Ar— r^n = a maximum, which

2& . A o , r, ^/A
gives -T~ = or A— Sr^Tr^O or 7' = y —

.
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From tte addition of 2/-TrA + rV— A and A —3rV = 0,

we get A = /•, or the lieight of the cylinder equals the radius

of its base.

Kemakk.—In much tlie same "way, if the whole surface is

given, when the cylinder is a maximum we shall have

r=y^, and h — 2r, by using A to represent the whole

surface.

13. Find the longest straight pole that can be put up a

chimney, when the height from the floor to the mantel = a,

and the depth from firont to back = i

Let D represent the mantel, and AB the pole passing

through it, meeting the floor in A, and the back of the chim-

ney in B ; then DE = a and DG = EF = b.

Eepresenting AE by x, the right-angled triangle ADE
gives AD = 4/ (a' + x^), and then from the similar triangles

ADE and ABF we have the proportion

AE : AD :: AF : AB = 4S •
^F= ^^"' ^ '^

(5+«') =AE X '

the length of the pole = a maximum ; consequently,

(a^ -f- iB^) j- + 1 1 must be a maximum. Putting the differ-

ential of this equal to naught, we readily get the equation

3 ,—

-

which gives x = \a-h , as required.
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Otherwisa Supposing AB to be tile position of the rod,

let it be slightly changed into the position A'B', by revolv-

ing about D ; then (ultimately), its change A'C at the ex-

tremity A must equal its change at the extremity B, and

have a contrary sign ; consequently, the approximate position

of the rod can be easily found by trial

It clearly, follows from what has been done, that we shall

have AD : DB :: tan ang A : tan ang B.ot x : h : - : -, or

— = — , which gives x = |/^, the same as befora
Cb W

14. To find when the cylinderDIGF inscribed in the cone

ABC is a maximum.

Eepresent the base and height of the cone by A and a,

and the height of the cylinder by x, then a —x represents

the height AE of the cone whose base is DF the upper base

of the cylinder. From well-known prLaciples of geometry,

w6' have
AH= : AE^ :: baseBC : baseDF =

xf;
AW , ^^ A ,

rrfi X base BG = -^ x (a
Aff a^ ^

consequently, multiplying this by x, the height of the cylin-

der, we have —j- (« — xf x for its contents.
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Hence, because —^ and a are invariable (a — xf x must be

a maximum, whose differential, put equal to naught, gives

— ^xdx {a — X) + {a — xf dx — Q or — 2i» + a — « = 0.

This solved, gives x— -,ar: the height of the cylinder is

one-third of that of tlie cone.

Eemark.—^It may be shown, in much the same way, that

the height of the maximum rectangle in any triangle is half
the height of the triangle.

15. " To cut the greatest parabola from a given cone."

Let ABC be a triangular section of the cone by a plane

passing through its axis at right angles to its base, and sup-

pose that the sought parabola passes through F in BO, then,

drawing the lines GB and FD through F, parallel to the

tangent to the circumference of the base at C and to the

side of the cone AC, meeting the circumference of the base

in the points G and E and the side AB of the cone in D,

the curvilinear section GDE of the conical sarface and the
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plane of tlae lines GE and FD will, according to the com-

mon definition, be a parabola ; having DF for its axis and

D for its principal vertex, FE and FG, which are evidently

equal and pei-pendicular to BC, being called ordinates to the

axis. If through D, DH is drawn parallel to FC, and DI

drawn above DH so as to make the angle HDI equal to

the angle A or FDB ; then HI, the part of the side of the

cone between the lines HD and ID, will be what is called

the principalparameter ox latus rectum of the parabola, it

being the parameter or latus rectum of its axis. Since

the angles D and H of the triangle HDI are equal to the

angles D and F of the triangle FDB, these triangles are

clearly equiangular and give the proportion HI : DH or

FC::FB : FD, or its equivalent, HIxDF=CFxFB=FE-,
by a well-known property of the circle. Eepresenting HI
by p, DF by «, and FE by y, the preceding equation be-

comes ^a; = y", the well-known equation of the parabola;

which, by knowing p and assuming x, will enable us to

find the corresponding values, -f y and — i/, of y, so that

the curve may cleai-ly be constructed by points, according to

the common methods. Because the area of the parabola

2 4GDE equals - GE x DF = ^ a>y, it is clear, since the area is
o o

a maximum, that xy must also be a maximum. If we rep-

resent the diameter of the base BC by a and BF by 3, we

shall get CF = a — z; which give y''^ az^ ^, from a well-

known property of the circle. Because the angles of the

triangle BDF do not change for different positions of the

parabola, it is clear that DF will vary as BF or z ; conse-

quently, xy may be represented by s n/{az — s^) and as' — ^
must be a maximuoL By putting the differential of this

equal to naught, we have Sas*— is' = 0, which gives ^ = -j-

,
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whicli, of course, gives the position of tlie parabolic section,

wlien it is a maximum.

16. " To find the position of a straight rod or beam, when

it rests in equilibrio on a prop in a vertical plane, having one

of its ends in contact with a vertical wall, which is at right

angles to the vertical plane of the rod."

Let BC be half the beam (supposed of uniform density

and dimensions) on the prop PE, and having its end B in

contact with the vertical wall BF, whose plane cuts the ver-

tical plane of the rod perpendicularly; then, through P
draw DE perpendicular to the plane of the wall, and DC
through C, the center of gravity of the beam, perpendicular

to the direction of EP, meeting its production in D ; then,

since the beam is in equilibrio, it results from well-known

principles of mechanics that DC must be a maximum. Put

BC = half the length of the beam = 5, and PE the dis-

tance of the prop from the wall = a, and represent the angle

BPB = CPD by <^ ; and we shall have

BC sin <;(> = 5 sin <^ = BE + CD,

also we have BE = PE x tan = a tan 0,

and hence, by subtraction, we have

5 sin <;(> — a tan = DC = a maximum.

Hence, putting the diiferential of this equal to naught, we
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have 5 cos — a -=- cos' ^ = 0, whicli gives cos ^ = y j-, as

requirei

Another solution.—^Let the figure be constructed, and the

same notation used as before : then let the beam be slightly-

changed in position, first, by giving it a slight angular motion,

in its vertical plane, about P until it takes the position C'Gr

;

second, by sliding it along P, without any angular motion,

until G coincides with B' in the vertical walL

From P as a center, with radii PC and PB describe the

arcs CC and BGr, cutting BC and B'C in the points C and C,

B and G, and suppose the horizontal line through meets a

vertical line through C in I ; then IC clearly represents the

vertical motion of the point C (or the center of gravity of

the beam), resulting from the angular motion.

Because the arcs CO' and BG, on account of their (sup-

posed) minuteness, may be regarded as right lines, which cut

BC and B'C perpendicularly on account of the minuteness

of the angular motion d<l>, it is easy to perceive that the

triangles CIC and GDP will (ultimately) be similar.

It is also easy to perceive, if the perpendicular to the waU
through G meets it in H, that the triangles BPE and GBH
will (ultimately) be similar to each other, and to the triangles
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DPC and C'lC ; hence, we have h x d4> = GG' + BG
and CI = CO' cos .(p, BH = BGr cos <p, and of course

C'I+BH=:5COS0(^</).

If B'H = CI, it is easy to perceive that the center of

gravity of the beam will be raised by sliding it along P (or

keeping its end in contact with the vertical wall), through

CI ; consequently, siace the center of gravity neither ascends

nor descends, the beam must clearly be in equilibrio, as

required. Now from the triangle BPB, we have

BP = a X sec =: .

COS.0

and thence from BPGr we get BG = : consequently,
COS ^ •^''

since ang BGB' differs insensibly from a right angle, we

have BG sec <p = -^ = BB'.

Hence, when the beam is in equilibrio, we must from

BB' = CI + BH = 5 cos 0c/0 have 5 cos (f>d(p = -^ ; or,
COS^</)

from a slight reduction cos = j/ y- , the same result as

found from the preceding solution.

Bemark.—Thus, it clearly follows that the question admits

of a most elegant solution, which does not require the use of

any principles that depend on maxima or minima.

17. "Given two elastic bodies A and 0, to find an inter-

mediate body X, such that if A strikes it with a given velo-

city a, the motion communicated through a; to may be a

maximum."

Because Aa is the momentum of A before impact, it re-
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suits, from tlie laws of collision of elastic bodies, that

—T is the velocity of x after impact ; and in the same

way X communicates the yelocity y-r r—. j^ to C,
' •' (A+x) {x + C)

which must be a maximum; consequently, its reciprocal

4:Aax 4Aa \ x /

AC
must be a minimum, which clearly requires x + to be a

X

minimum. By putting the differential of this equal to

AC
. .

naught, we get 1 — ~^'' = ; which gives x = I^AC, the

same result that the process explained on page 101 will give.

Eemaeks.—1. Putting -^ = —^ = y -r = m = the

ratio of a; to A ; we readily get the geometrical progression

A, mA, m^A., to'A, &c. ; which may be supposed to result,

as in the question, from the communication of motion from

A through wA to w^K ; and from mK. through ot^A to vf^K
;

and so on, to any extent.

2. It is also clear, that a, —
,
j-r- -j,

'— &c.,
1 + m (1 + 7rif (1 + rrCf '

are the velocities of the successive bodies, which are also in

geometrical progression ; and that

Aa, -—— Aa, (— ) Aa, (---

—

) Aa, &c
' 1 + m ' Vl+m/ ' M + m/ '

also in geometrical progression, severally express the mo-

menta of the bodies. Hence, if »i = 1, or if the bodies

equal each other, they will have equal momenta ; while, if

the bodies are unequal, their momenta will increase or de-

crease, accordingly as 771 is greater or less than unity.
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3. As a result of these principles, it has been proposed to

construct speaking and hearing trumpets that shall be more

effective than those previously used.

Thus, let the trumpet be a tube, such that its section at

right angles to its length shall always be a circle, and that,

when the distances of the sections from the place of the

mouth or ear increase in arithmetical progression, the radii

of the sections shall increase in geometrical progression

;

then, if x represents the distance of any section from the

place of the mouth or ear and y the radius of the section,

we may expi-ess the connection between x and y by the

equation log y = a?, or, by taking a for the base of the

logarithms, we shall have y = a^, the well-known, equation

of the logarithmic curve ; whose revolution around its axis

or' the axis of », which is an asymptote to the curve, will

generate the proper figure or form of the trumpet.

4. Now, the trumpets being filled with the air, which is a

very elastic substance, when they are used either in speaking

or hearing, it is clear that the sections of the tubes, regarded

as of very small equal thicknesses, may be supposed to com-

municate motion successively to each other, like the elastic

bodies described above ; so that there will be an increase of

momentum from the less to the greater sections in the speak-

ing trumpet, and a decrease of momentum in proceeding

from the greater to the less sections in the hearing trumpet.

5. It is easy to perceive that there will be equal momenta

communicated from section to section, through a prismatic,

or cylindric column of air; noticing, that the sections are

always supposed to be perpendicular to the lengths of the

columns.

18. Supposing the ecliptic to be a circle, it is required to

find when the equation of time is a maximum.
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Let AB and AC stand for the ecliptic and equator,

regarded as great circles of tlie celestial sphere, A the first

point of Aries and S the place of the sun when the equation

of time is a maximum ; then, the arc of a great circle of the

(celestial) sphere drawn fi-om the sun perpendicular to the

equator meeting it in S', gives AS, AS', and SS' for the

sun's longitude, right ascension, and declination (supposed

north, for simplicity); now, since time is reckoned by the

sun's motion from west to east or in the direction of the

equator, or, which comes to the same, because S and S' are

on the same celestial meridian, it is clear that the time

shown by the sun at S must be the same as if it was placed

at S' ; whereas, if the angle A = 0, or the ecliptic coincides

with the equator, the point S wUl be reduced to the equator

so that AS will represent the sun's right ascension ; and of

course AS — AS', when reduced to time at the rate of 15°

to the hour, will be the equation of time.

From spherical trigonometry we have

1 : cos A : : tan AS : tan AS' = tan AS x cos A

;

consequently, putting tan AS = x, and

c = cos A = cos 23° 28' very nearly, we have tan AS' = ex.

Because when AS — AS' is a maximum,

tan (AS-AS') = i^^-^^5^ = ^—̂-: = (lz:^
^

' 1+tan AS tan AS' 1 + ox' 1 + cx^

is also clearly a maximum, it is clear, since c is invariable,
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1 + cx' 1
that =—[- ex will be a minimum ; consequently

(see page 101), we stall have a? = y- = the tangent

of the sun's longitude, and ex = the tangent of the sun's

right ascension = ^/c, when the equation of time is a maxi-

mum. Because » x ca? = |/- x |/c = 1 = 1^, it is manifest

that we must have AS + AS' — an arc of 90° ; and it is

clear from x — |/- = 1.04416, the tan of 46° 14', that the

sun's longitude is 46° 14', and of course 90°-46° 14'=43° 46'

must equal his right ascension when the equation of time is

a maximxun. By subtracting AS' from AS we get 2° 28'

for the maximum value of the equation in degrees, &c.,

which being converted into time at the rate of 15° to "the

hour, and 15' to the m.inute, &c., gives 9 minutes and 52

seconds, for the maximum value of the equation of tim.e.

19. Supposing the frustum of a right cone whose base and

altitude are given, to move forward in a resisting medium in

the direction of its length, having its lesser end foremost ; to

find the diameter of the lesser end, when the resistance of

the medium is a minimum.

N^



114 EXAMPLES.

Let BCPG represent tte frustum, BO = a and G = a;D

the radii of the greater and lesser ends, and OD = h the

height. The frustum, moving in the direction OD, it is

plain that the resistance of the medium will act in a coii-

traiy direction, so that the line w.p parallel to OD may stand

for the resistance of a particle of the medium, which by-

drawing mq perpendicular to the side of the frustum, may

be resolved into the forces mq and qp, of which the force m'j

is alone to be retained, since qp acting in the direction of the

slant side of the frustum, can not sensibly affect its motion

;

and, in like manner, by drawing qn at right angles to mj),

we may separate the force niq into the two forces mn and

nq, of which mn is alone to be retained, since nq is evi-

dently destroyed by an equal and opposite force.

Hence, ifpm is represented by unity or (1), it is plain

that mn, the only efiective part of mp, must be represented

by the square of the sine of mpq,'ihG angle of incidence of

the resisting particle, with the side of the frustum.

FL being parallel to mp, we may clearly take the angle

CFL, whose sine equals CL -=- CF = -—^,—-. r^r , for
' ^

y'[/r + (a — xy]

(a — xf
the angle of incidence ; consequently, j^

—-^ -^ equals

the resistance of each particle that strikes the slant surface of

the frustum, while unity equals the resistanoe of each parti-

cle against the smaller end of the frustum.

If or represents the number of particles that strike the

lesser end of the frustum, it is plain that a^ — a? will repre-

sent the number of particles that strike the curve surface of

the frustum.

Hence, since the resistance of each particle against the

lesser end of the frustum is perpendicular to it and repre-
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sented by unity, it is plain that a? may be taken for the re-

sistance against the lesser end of the frustum, while

(a — »¥
ji ,

-/
—_—\2 X {^^ — *^) represents the resistance against

the curve surface of the frustum ; consequently

2
{a — xf{a^~x') __ }M + g^ {a-xf

"^ (a-xf+ k'

— the resistance to the whole surface of the frustum = a

minimum.
/v" /v2

It is hence clear that 7 r^ r: must be a minimum,
(a — xy + /r

'

(a — xf + A^
or its reciprocal ^^ ~—^—- must be a maximum.

33 — a

By putting the differential of this equal to naught, we
(a — xY h^

readUy get the equation =— , whose solution gives

2a' + h""^ h Via" + h^x=

of which, X =

'•2a

2a^ + h? — h Vii^~+Ji^

is clearly the only root that is applicable to the question,

since the other root will be greater than the radius of the

base of the frustum. From

(a-xy h' , (a-xf X CU DF
^^ = — we have -^^—7^^^ = — or =p^., = 7^7^ ;X a /i^ a FL- CO '

which, supposing the cone completed, as in the figure, gives

a?^ — o7\ °^ its equivalent CO^ = SO x SD.
bvj bU

Hence, bisect OD in Q and join QG, and set QO from Q
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t» S' on QD produced ; then, from the right-angled triangle

CQO we have

CO'- = CQ^ - QO^ = QS"" - QD'

= (QS' + QD) (AS' - QD) = OS' x S'D,

as it ought to do ; consequently, the trapezoid CODF' revolv-

ing about OD as an axis, will clearly generate the frustum of

minimum resistanca

Eemarks.—1. It will be perceived that the frustum BCFGr,

has been taken at hazard, and thence from the reasoning the

equation 00^ = SO x SD found, which has enabled us to

find the true frustum, as above.

2. "We have taken the example from the scholium to Prop.

34, Sec. 7, Vol. 2, of Newton's "Principia;" and it is easy to

perceive that the preceding construction is the same as that

of Newton.

.20. To find the position of Venus when brightest, sup-

posing the orbit of the earth and that of Venus to be circles

in the same plane, having the sun in their common center.

Let S, E, V, denoting the centers of the sun, earth, and

Venus, be connected by right lines forming a triangle ; repre-

senting the sides SE, SV, and EV, by a, h, and x, and using

the circle abed to represent a section of Venus by the trian-

gle SVE ; then, ac and id being diameters of Venus perpen-

dicular to its distances SV and EV from the sun and earth,

it is manifest that ab may be taken to represent the breadth

of the illuminated part of Venus, which by drawing az per-

pendicular to id gives iz for the versed sine of the angle

aYb, when the radius of Venus is represented by unity,

which may clearly be taken to vary as the part of Venus

that reflects light to the earth at E ; consequently, from the
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principles of optics =p will express the quantity of light

reflected by Venus to the earth.

From the triangle SEV, we have

SE==SV^+EV'-2SV X EV cos SY'E^i''+x'+2bx cos aYb

since the sum of SVE and aYb is clearly equal to two right

angles.

Eepresenting cos aYb by cos <p, since SE^ = a'', we readily

get from the preceding equation cos ^ = ¥
2bx

'-, which

gives
1 — cos _{b+xf

2ba^

a maximum, since 1—cos ^ represents the versed sine of the

angle aYb. Since

(b + xf — a^ _ (b + x + a).{b + x— a) _
2bc'

~
2bx

~
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a maxinnim, by taking the hyperbolic logaritbin of this, we

must have

log {b + x + a) + log (5 + K — a) — 3 log £» — log 25 =

a maximum; consequently, putting the differential of this

equal to naught, we shall have (see p. 54)

b+x+a h+x—a x

or its equivalent — Sb^ — 4:bx — oc? + 3a^—0; consequently

solving this quadratic, we have x= —2b + VV + da^ and

x= —2b— Vb^ + Za?, which, giving x negative, must be re-

jected, and of course we shall have a?= — 25 + Vb- + 3al

By representing a and b by their proportional distances

1 and 0.72333 nearly, we get, fi"om the preceding equation,

X= 0.43046 for the distance of Venus from the earth.

Hence, we easily get SEV = 39° 44' for the elongation of

Venus seen from the earth, and ESV = 22° 21', the elonga-

tion of Venus seen from the sun, which being less than

43° 40', Venus's greatest elongation, shows that she is bright-

est between her greatest elongation and her inferior conjunc-

tion, being nearly half way between the inferior conjunction

and greatest elongation.

Because the preceding reasoning does not give the posi-

tions of Venus when she reflects the minimum light, we
shall determine these positions after the following method.

Thus, from p. 95, we have

F (a; - /.) = F^ - ^g:^ A + c^ (F.)^ -, &c.,

and F(x + h)^Fx + -^h+-^^^-+,&c.;

where it will be noticed, thatwe have shown Fas can not be a
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maximuin or minimiim, unless it is determined on the snp-

position that the term —^

—

- h is made to disappear from the

equations. Now it is easy to perceive, that we have thus far

made the term disappear from the equations by assuming

- \ = ; we now observe that we may, when necessary,

make the term disappear from the equations by putting A = 0.

or, smce tor —^

—

-li^ we may evidently write —^

—

ax, we

may assume c^a; = ; which, in this question, clearly indi-

cates the inferior and superior conjunctions of the planet
;

since a; is a minimum and maximum at those points.

Eemarks.—1. By putting I =0.3871, we find x =1.00058,

and thence get SEV = 22° 19' for the elongation of Mercury

when brightest Also, the angle BSV = 78° 56', while it is

only 67° 13'.5 at the time of the planet's greatest elonga-

tion ; consequently Mercury is brightest between its greatest

elongation and the superior conjunctioa

2. Because the motion of Venus about the sun relatively

to that of the earth is about 37'; by dividing 22° 21'=1341'

by 37', we get 36 days for the time when Venus is brightest

before and after her inferior conjunction.

3. If we apply the formula a; = — 25 -f Vlr+ Sa", to find

the position of a superior planet when brightest, it will be

found to be impossible ; for, since 3a^ will be less than 35^,

it follows that Vb^ + 3a^ will be less than 25, and, of course,

X — — 2h -\- Vh- + Za? will be negative, which is impos-

sible, since a*, the distance of the planet from the earth, is

d{¥x)
always positive. Hence, it is manifest that •,

_

dx — 0,

when applied to the superior planets, can only be satisfied
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by putting dx = 0; which clearly indicates that they reflect

the most light in their oppositions, and the least in their

conjunctions with the sun,

21. From the extremity of the minor axis of an ellipse

to draw the maximum line to the opposite part of its pe-

rimeter.

Let AEB be an ellipse, having AB and DE for its major

and minor axes ; and let EF be the maxinium line required,

having EG- and FG for the rectangular co-ordinates of its

extremity F. Then, a and b representing the major and

a'
minor axes, we have }^ : c? '.: hx — a?j -if =-73 (bx—a?\ from

a well-known property of the curve. Hence, adding a:' to

2/^we have EF==EG' + FGP= ar' -f 5^ = 0;= +-^(5aj-£c=);

consequently, since EF^ is a maximum, a? + -j^ {bx— aF)

must be a maximum ; and putting its differential equal to

a?
naught, we have 2x +^ Q) — 2x) = 0, which gives

1 a'b

2 a=- 6=
which is clearly a maximum, since the-

differential of 2a! + -j^{b — 2x) is (2 ^) f&, which

negative, when dx is positive, as it ought to be.

13
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Remarks.— 1. It is evident from the nature of the

ellipse, that the relation of its axes must be such that x

shall not be greater than the minor axis &, in order that the

preceding value of x may be applicable to it ; since EG must

clearly not be greater than ED = h.

Hence, to find the greatest value that b can have when the
-I 27

preceding solution is possible, we put 5 for aj in a; = ^ -^

—

=^,

and thence get 2¥ = a° or 5 ——^ ] consequently, when

h has this or a less value, the maximum line wUl be found

J.
1 a-5

irom iB = ^ -

2 of- b^'

The question and the substance of what has been said

are substantially the same as given by T. Simpson, at pages

35 and 36 of his " Fluxions," for the purpose of showing

whether the solution found in any case falls within the

limits required by the nature of the question.

2. Resuming, EF^ = a? -\-^(bx — a?), and putting its dif-

ferential equal to naught, we have 1 2a3 +"tf (^ ~ ^''')) ^* =0 i

which, by putting dx = 0, clearly gives the minor axis ED
for the maximum line when the minor axis is not less

than -77 . When the minor axis is not greater than —j, by
i/2 y^

a'
putting the factor 2j3 + -p- (J — 2a!) of the preceding differen-

1 2A

tial equal to naught, we get « = „ ^ __ „ ,
to determine the

maximum value of the line to be drawn ; and by putting

dx = 0, we get the minor axis ED for the minimum value,

as is manifest from the consideration that when b is less
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than jr tliere will be two maxima values, represented by EF

and EF', and of course ED must be a minimum.

It is hence clear tliat the (common) rule for finding the

maxima and minima of a function of a single variable, given

at p. 96, is not always sufficiently general

22. Given x -\- y \- z=- a and af^jfzP

or m log X + n log y -i- p log (a— x — y)

a maximum, to find x, y, and s.

It is manifest that (since x and y are independent varia-

bles) we may put the differential of the preceding equation,

with reference to y, equal to nothing, and thence get y in

terms of « ; by which means we shall reduce the question to

that of making a function of a single variable equal to

naught

Thus, we shall have

ndy _ jpdy ^ ^ ^^
n p_

y a — x—y y a—x—y 0,

nn ffr Qyi

which gives y= —^--

—

-
; consequently, putting this value

for y in. m log x + n log y +p log {a — x — y), it becomes

m log X.+ n log (a — x) + log n"

-(p + n) log {n +p) +p log {a—x)+ log^',

which must be a maximum ; consequently, putting its dif-

ferential equal to naught, we have

\x a — x/ '

whose differential gives «

\x- Ul — xfl
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From tlie first of these equations we get

X = —
,

and the second equation shows x'^y'^s^ to be a maximum, as

required.

Eemaeks.—1. This example has been before solved at

page 100, and it is easy to perceive that we obtain the same

results as there found, by substituting the value of a; in that

of y, and then substituting the values of x and y for them,

in s = a — X—y.

2. We have here given the preceding solution of it, for

the purpose of showing the facUity with which a function of

any number of independent variables may be made a maxi-

mum or minimum, by reducing it to the maximum or mini-

mum of a function of a single variable ; since it is easy to

perceive that we may proceed in like manner, whatever may
be the number of independent variables.

To make what is here said more clear, we will apply the

process to the following example from page 33 of Simpson's

"Fluxions."

23. To find such values of x, y, and s, as shall make

(b^ — a^) (ay's — s') {xy — y^) a maximum.

From making y alone variable, we have xdy — 2ydy = ;

which gives y = -
, and thence xy —y^= j^ .

In like manner, making s alone variable in the proposed

CO

equation, we have xFd^ — Sxx'ds = ; which gives s = —

^

and thence x^s — z"— ^——^ . By substituting the preceding
o 4/0

values ia the proposed expression, it becomes



124 EXAMPLES.

23^ a?
{¥ — of) X o~y5 ^ A ~ T'^'^^^^^

j

consequently, we must make h'uf — a^ a, maximum.

Hence we have oi^x*dx—8x''dx—0, and {20¥x^—56x^)(lx';

the first of these gives » = „ p5, which put for x in the sec-

ond expression makes it negative, and of course shows the

proposed expression to be a maximum as required.



SECTION V.

TANGENTS AND SUBTANGENTS, NOEMALS AND SUBNOR-
MALS, ETC.

M N

(1.) Suppose AM = x and MS = y to stand for the

abscissa and ordinate of the point S of the plane curve ASV,
having A for their origin ; then, conceiving the curve to be

described bj the extremity S of the ordinate, while the other

extremity M moves uniformly from the origin A of the co-

ordinates along the line of the abscissae toward P, so as to

keep the ordinate constantly parallel to itself during the

motion, we may clearly suppose the ordinate to increase or

decrease in such a way as to describe the curve.

(2.) If now we suppose the right line TS< to pass through

the extremity S of the ordinate of the curve ASV in any one

of its positions, in such a way that the first differential coefl-

cient of the equation of the curve equals the first differential

coeflGicient of the right line
;
then, the right line is said to

touch the curve, or the line and curve are said to touch each

other, and thepoint S is called their points of contact.

Thus, if y= ^ (ai) and y = Ax + B represent the equa-
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tions of tlie curve and right line, by taking their differential

coefficients, we sHall have -f-=—,— and -=^ = A ; conse-
dx ax ax

d<b(x)
quently, according to the definition, we shall have A = —

-^

—

-;

which, when x is known, will give the value of A, and

thence the tangent can easily be drawn.

Since A = -^ is derived from the equation of the curve,

if X and y represent the co-ordinates of the point of contact

of any tangent with the curve, and X and Y the co-ordinates

of any other point of the tangent, it is manifest that

may be taken as the general equation of the tangent

Putting Y = 0, in this equation, we easily get

|-=a;-X= MT,
dy

dx

called the subtangent, which is known, since y and -^ are
dx

known from the equa,tion of the curve ; noticing, since x and

y are supposed to be taken in the direction of the positive

co-ordinates, that X = — AT taken in the direction of x

negative, must be subtracted from x = AM taken in the di-

rection of X positive, which gives a; — X = AM + AT = MT,
as above.

It maybe proper to illustrate what is here done, in another

way : thus, let the ordinate of the right line EO be drawn
very near SM, SQ be drawn parallel to MO or the axis of x

;

then, representing MO or SQ by dx, it is clear that QR will

represent d>/ both in the right line and curve ; and that the
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triangles SBG and STM, being equiangular, give (from well-

known principles of gepmetry) the proportion

EQ : SQ::SM : MT,

or its equivalent -^ = SM -j- MT ; which gives ^- = TM, or

-3— = MT, which agree with the expression for the subtan-

gent before found. Where, it may be added, that if the co-

ordinates are at right angles to each other,

-^ = tan ang ESQ =: tan ang STM

to radius unity ; consequently, we find the subtangent hy

dividing the ordinate by the tangent of the angle of the

inclination of the tangent to the line of the aiscissm, when

the axes of the proposed curve are rectangular, or, which

comes to the same, we multiply the ordinates iy the tangent

of the angle it makes with the tangent, for tlie subtangent.

(3.) If SN" is drawn through the point of contact S, per-

pendicular to the tangent, meeting the axis of x in N, it will

be what is called the normal ; particularly when AP is the

axis of the curve, or cuts the tangent at A perpendicularly,

and the ordinates of the curve are perpendicular to the axis

;

also, MN is called the subnormal.

Since the triangles SBQ and STM are equiangular, it is

manifest that whatever may be the angle AMS, provided it

is known, we can always find all the parts of the triangle

STM from the equation of the curve and knowing the

ordinate SM, since SM = y gives TM = y -^ -^ = the sub-

tangent Hence, we easily get SN, the normal, from the
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triangle STN, and TN from the same triangle; conse-

quently, TN" — TM = MN = the subnormal is found.

We shall, in what is to follow (according to custom), sup-

pose AP to be the axis of the curve, whose ordinate y cuts

it perpendicularly ; then, the triangle SRQ will evidently be

similar to the triangle SMN, and will give

SQ : RQ :: SM : MN, or da; : <Zy :: y : MN =^
and thence the normal

is found: noticing, that in much the same way from the

triangle STM, we get the tangent ST = y |/ 1 + y{-fj

There is another way of finding the subnormal from the

equation of the normal, which it may not be improper to

notice in this place.

Thus, assuming Y— y = A (X— x) to represent the equa-

tion of the normal, we shall have A equal to the tangent of

the ang. SNP to radius unity; observing, that the angles

which right lines make with the axis of x, are supposed to

be included between them and x positive, estimated (accord-

ing to usage) from right to left.

Because the angle SNP, from well-known principles of

geometry, equals the sum of the inward and opposite angles,

S = 90° and T of the triangle NST, we shall have

tan SNP = tan (90° -f T) = ^^^-g-'tS = -^^^ ^ cos (90° + T) - sin T

1 1 ' dx „^ 1 „„= - ti^ = -^ = -^5^PP-62and63.

dx

Hence, from the substitution of the value of A in the
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equation of the normal, it will become

Y-3/=-|(X-.)=-|(X-.);
dx

which is the well-known equation of the normaL

If in this we putY= 0, we shall have — y = — — (X— a;)

;

or, since X — a; = AJS" —AM = MN, the subnormal — ^,
dx

the same as before found.

(4.) Resuming the equations that have been found, when
the ordinates are perpendicular to the line of the abscissae,

we shall have Y - y = ^ (X - ») (1)

for the equation of the tangent that passes through the point

(x, y) of any plane curve ; and

dx

is the equation of the normal to any plane curve, at the

point {x, y) : noticing, that these formulas clearly show that

to find the tangent or normal at any point {x, y) of any plane

curve, it wiU be necessary to find -^ from the equation of

the curve, and to put its value in the preceding equations.

Thus, to find the tangent and normal to the circle whose

equation is y^ + a? =^ 1^^ r being the radius.

By taking the differential, we have 2ydy + Ixdx = ;

which gives -r- = — ~\ and substituting this value of -7-
° dx y "^

in (1) and (2), we haveY— y = (X — «), or, by a simple
if

6*



130 TAXGEXTS TO THE ELLIPSE, HTPERBOLA, ETC.

reduction, Yy + 'Kx = y- + x' = r^; and Y — y = - (X— a?),

or Yx ,= yX, wMch shows that the normal passes through

the center of the circle at right angles to the tangent

Taking a^y- + ¥3? = a%\ the equation of the ellipse,

and proceeding as before, we get a°Yy + VKx — arlr, and

a^Xy — VYx — {a? — ¥) yx, for the equations of the tangent

and normal, which are well-known forms.

Supposing a and J to be the half major and minor axes

of the ellipse, by putting Y and X successively equal to

naught in the preceding equations, we have

X = — and I =—, and X = ^— a;, i = ^^ y :

X y

'

0.^ ' —V ^

'

which are well-known forms for drawing tangents and nor-

mals to the ellipse.

Remarks.—1. Because a'y- — b^aP = — aV, the equation

of the hyperbola, is deduced from that of the ellipse by

changing the signs of its terms that involve P ; it is clear

that, by cha.nging the signs of the terms that involve b^ in

the above results, they will give X =— and Y = ,

a' + P ^ a' + V „ ^, ,.
and X =—-3— X, Y = —73-— y, tor the correspondmg

quantities in the hyperbola.

2 72

2. From X = - and Y = , by supposing x and y to
X

2/ '

be infinitely great, it is clear that X and Y will become un-

limitedly small, or that tangents to the hyperbola at points

infinitely remote from the center will pass through it very

nearly, and have cvy^ — Va? — 0, or its equivalents y = -x

and y = », the equations of right Hnes passing through
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tlie center of tlie hyperbola, for their limits ; in such a sense,

that they will ultimately differ insensibly from coinciding

"with these equations : noticing, that these limits are called

the asymptotes of the hyperbola ; and from a'lf — 5V =
and ay — h^i^ = — a^S^, it is also clear that the asymptotes

may be regarded as exterior limits of the hyperbola.

3. It is easy to perceive that the preceding conclusions with

reference to tangents and asymptotes are independent of the

angle formed by the axes of co-ordinates
;
provided a and

h represent a pair of semiconjugate diameters having the

same directions as the axes of co-ordinates.

(5.) "We will now show how to draw tangents and normals

to plane curves, referred to polar co-ordinates.

Thus, let j-S = ? be the radius vector drawn from the

pole r to any point S of the curve, ArP the angular axis

making the angle Pz-S = w with the radius vector ; then

through the pole draw Nz-Q at right angles to the radius

vector, meeting the tangent to the curve at S in Q and the

normal SN to the curve at the same point in N ; then we

shall take rQ and r-N for the subtangent and subnormal of

the tangent SQ and normal SN to the curve at S. Drawing

SM = y perpendicular to the angular axis AP, we may

evidently take vM = x and SM = y for the rectangular co-

ordinates of the point S of the proposed curve, having r
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for their origin; and from the right-angled triangle rSM.,

we get, from the well-known piinciples of trigonometry,

r sin to^^y and r cos o) =z x, which give 7-^ = a^ -f y\

Because the angle SrT = u is the exterior angle of the

triangle ST/-, we shall have the angle S = u — T, which gives

tan o) — tan T ytau S = tan (t) — T) = q— 7

—

ff, , or since tan w
^ ^ 14-tanwtanT X

cLii

and tan T = -~ (page 127), we have

tanS
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dx T dy . ^ _, ydx — xdv
-J- and ^ in tan S =^ f-,ao) db) xdx + ydif

we get, after obvious reductions,

y tan S = —^ = —, and thence rN = — -p, tlie same

d(>i

as before ; see p. 117 of Young's " Differential Calculus."

Since the angles SrP and SrT = 180°, if we represent

SrT by e, we shall get cj = 180°—
0, which gives dot—— dO.

Hence, the preceding equations become

r-tan S = /• X -^ (3)

and r cot S = r tan rSN = -r^ (4)

:

ad '

noticing, that 0, the angle TrS, is the length of an arc of a

circle whose radius is unity and center r, which is measured

from rT toward rS, and may contain one or more circum-

ferences, or any part of the circumference, according to the

nature of the case.

Eemabk.—The substance of what has been done may be

expressed in the following simple manner.

Thus, from r draw the right line rb to make the small

angle d6 with rS, and from r as a center, with radii rm = 1

and rS = r, describe the small arcs mn and Sa, cutting rS
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and rh in the points mn and Sa ; then, mn = dO, and from

the similarity of the circular sectors, we have

1 : dO-.-.r: Sa = rdO.

Then, through S draw So perpendicular to rS and equal to

rdO, and ch' perpendicular to Sc, meeting the tangent Tt in

h'; then, the triangle Sch' is evidently equiangular to the

triangles rSQ and rSN. From the equiangular triangles

&ab' and SrQ, we have the proportion b'c : Sc :: Sr : rQ, or

rdd
rO= h'c : rdO : : r : rQ = -p-^ x r ; consequently, by com-

o

paring this value of rQ, with that of (3) at p. 133, we must

have h'c — dr ; and of course if dO represents the differential

of 0, taken for the independent variable, J/c must represent

dr, the differential of 7- ; r being a function of d, see (4) at

p. 2. We also have, from the triangles Sob' and Sr'N, the

dr
proportion Sc :l'c :: Sr : ?"N, or rdO : dr wr : ?'N = -^j,

which is the same as (4) at p. 133.

It is hence evident, that if the angle dQ is infinitely small,

the triangle ScV and the curve line triangle Sab will come

infinitely near to coincidence; consequently, according to

the method of limiting ratios, we shall ultimately have

T^dQ
ia : Sa : : Sr : ?Q or dr : rdd : r : rQ= —r-

dr

for the subtangent, and rdO : dr :: r : r'N = -j^ for the sub-
dO

normal; results in conformity to the method of limiting

ratios ; see p. 46.

To illustrate what has been done, we will show how to

draw tangents and normals to the common parabola, whose

equation is 4aa; = y^, when the pole is taken at the focus.

Thus, let PAQ represent the parabola, having AM for its
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axis and A for its vertex ; then S, being the focus, we liave

4a = 4AS, and representing the perpendiculars AM and

PM by X and y, the equation 4AS x AM = PM^ of the

parabola, becomes ^ax = y^
; which expresses the equation

referred to rectangular co-ordinates. Supposing the right

line T< touches the parabola at P and intersects the axis in

T, we have SP = r and the angle PST included by PS and

TS = Q. By trigonometry, we have

PS cos ang PSM = — r cos = SM = a; — a,

or x = a — 7' cos d, and PS x sin PSM = r sin 9 = y

;

consequently, from the substitution of these values in the

equation 4:ax = y°', we have 4a (« — »• cos 0) = r* sin^ 0, which

is easily reduced to the form

4a^ — 4ar cos + r^ cos'' = {2a — r cos Of

= r^ sin^ + -r^ cos^ = r^ (since sin^ d + vas' d = 1);

2«
consequently, we readily get r = -— =

^
for the

COS'

polar equation. By taking the diflferentials of this equation,

a

a sin -^dd
,^ ^

we have dr —
i'
and thence -5— = cot „ , which,

cos' ^
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substituted for (3) in p. 133, gives

a

7- cot 2 = PS X tan ang SPT

= the perpendicular from S to SP, limited by the tangent

PT = the sought subtangent; and from (4), at p. 133, we
. e

, a sm
2 „

have -j^ = jr- = the subnomlal = r tan - = the
dO 2

cos'

2

perpendicular to SP through S, produced to .meet the

perpendicular to T< through P, which gives the limit of

the required normal.

Kemaeks.—1. By taking the differentials of the members

of the equation 4a£B = y^, we have 4iadx — 2ydy, which gives

dx 2y T ,, dx 2if
-r ^=-r-, and thence yx-Y-=.-f-=2x=- the subtangent,
dy 4:a^ ^ dy ^a °

agreeably to what is shown at page 127 ; consequently, by

taking MT — 2AM = 2,t, and joining P and T by a right

line, it will touch the parabola at P.

2. From ^adx = 2yc?y, we get la = ^-^ = subnormal

(see p. 128), is constant, and equal to -^ = half the parameter
it

of the axis of the parabola ; since ia is called theparameter

or latvs rectuin of the axis of the parabola.

For another example, we will show how to draw the tan-

gent and normal to the logarithmic spiral, whose equation is

? = »*; by using polar co-ordinates.

Lef^l, 2, 3,V, represent the spiral, having r for its pole,

and r, 1, T for its angular axis, such that the positive valaes

of are the arcs of a circle (rad, = 1), which increase arith-

metically in the order 1, 2, 3, V, while / = a^ increases geo-
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metrically ; then, because 5 = at 1, it is clear that since

? = a* = a° = 1, that we must have r == 1 represented by

rl, and in r= a', 6 = 1 must be represented by the arc of

the circle whose length is 1, which we may suppose to equal

the length of its radius.

By taking the hyperbolic logarithms of the members of

r = a', we have log r=6 log a ; whose differentials give

— = log a dd, or —^ = tan ang rST = log a ; conse-

quently,, the angles at which the radius vector cuts the

spiral having the constant, log a, for its tangent, must be

constant or invariable ; noticing, if log a = 1, that the radius

vector cuts the spiral at an angle of 45° or half a right angle.

By (3) and (4), given at page 133, if we divide r by

—— = log a, and multiply r by --j^ = log a, we shall have

^

= ra, and r log a = rN, for the subtangent and sub-

normal, as required ; consequently, the tangent and normal

can readUy be drawn.

(6.) "When a right line touches a curve at an infinitely
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remote point from the origin of tlie co-ordinates, and at the

same time passes at a finite distance from the origin of the

co-ordinates, it is said to be a rectilinear asymptote to the

curve.

Thus, by assuming the equation of the tangent from (1),

given at page 129, we have Y — y = -^ (X — »), in which

X and y belong to the point of contact of the tangent with

the curve, while X and Y are the co-ordinates of any other

point of the tangent ; then, by putting Y and X successively

equal to naught, we have

-,= |(X-»), or X = «-^....(5,,

and T=y-xg (6);

from which it clearly results, if X and Y, or either of them,

is finite when a; or y is infinite, that the curve must have a

rectilineal asymptote, while if X and Y are both infinite or

impossible, the curve has no rectilineal asymptote.

Thus, from y = - Vd^— aS the equation of the hyperbola,
Cb

we have ay = - xdx -=- i/iar— an or -^ = ?
^ a ^^ ' dy 5 '

a

which with the value of y reduce (5) to X = a; —
;

which, by making x infinite, and rejecting a* on account of

its minuteness, with reference to a?, becomes

X = a! = 85 — a; = 0;
X

consequently, the hyperbola has an asymptote passing through

the center.
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a
Again, reducing the equation to a? = ^ (/(J^+ J/'Oi

^^ have

V- = ^i and thence (2) is readily reduced to
dm a y ^ ' •'

Y — y —
; consequently, making y infinite and re-

jecting 5^ on account of its comparative smallness, we have

Y = y — -^^^y — y = 0, and of course, as before, the

curve has an asymptote passing through the center.

Eesuming the equation y = - Vx' — a^, and supposing x

unlimitedly great, hy rejecting a^ on account of its compara-

tive smallness, we have y = — a;; or, since the radical ought
(Jb

to have the ambiguous sign ±, we get 2/ = ± - «, or its

fyy* fyT*

equivalents, y = — and 3/
=

; which clearly are the

equations of two right lines that are asymptotes* to the

hyperbola, passing through the center of the curve, in ac-

cordance with what has been before shown; noticing, that

equivalent conclusions result immediately from

^ _ _^-
5 X

^^^ ^ _ i ^^' + y'
,

dx a ^{0? — cP) dx a y

making x infinite in the first and y in the second, and reject-

ing a' in comparison to a?, and 6' in comparison, to if- ; and

we thus get dy =^ ± - dx, or its equivalents dy ^= - dx

and dy =^ dx, which are clearly the differentials of the

equations given above.
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Eemaeks.—1. K we convert

into a series arranged according to tlie descanding powers

of X, we shall have

hx (, d'x-'-\ a^x-^ a^x'^

which, when x is very great, clearly gives

. = ±-. .= =t^(i-"^),
hx

hx (^ a^x~^ a*x^\ .

y = ^^v—2—^h^-^
for a succession of lines that are clearly asymptotes to each

other, and to the hyperbola ; noticing, that these are some-

times called hyperbolic asymptotes, because the first of them

are right lines. It is evideat from

that we may express the asymptotes iu terms of the descend-

ing powers of y.

2. From a^ = a^— J*= a?* (1 — h*x-^), we in like manner

a? /, ¥x^ Vx-^ 5»ar-" . \
get y=_(l__^ _ jg--,&c.j

whichgives y = ± —, y= ±~ (1 g"}

for asymptotes to the curve whose equation is ay = ar* — 5*,

and to each other ; and because none of these are rectilineal,

tbey are from their forms said to hQ parabolic asymptotes.
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3. It is hence easy to perceive how we may proceed to

find the asymptotes of curves that admit of them. Thus, to

find asymptotes of the curve whose equation is

yV — pa? — 5a! + c = 0.

Dividing its terms by a?', the equation is reduced to

2/ - - px — hx-^ + cx~^ — ;

consequently, if — px = 0, and y^ — px — hx-^ — 0,

are the successive parabolic asymptotes of each other and

the proposed curve.

If we take the curve whose equation is " my^— d?y= ma?^,"

and develop y into a series of the descending powers of »,

we shall in like manner get y= — m, 2/=— m — m''.-8-',

3/*= — m — m^x-^ — Swa;-", &c., for the hyperbolic asymp-

totes of the proposed curve ; noticing, that the first of these

is a right line parallel to the axis of x on the side of y nega-

tive, drawn at the distance m, from x.

4. When a curve is referred to polar co-ordinates, it is

clear that there will always be an asymptote when r, the

radius vector, is infinite, and the corresponding' value of Q is

finite ; but if r and are both infinite, there is no asymptote.

(7.) To illustrate what has been done more fully, take the

following

EXAMPLES.

1. To draw a tangent and normal to any point of the

logarithmic curve, and to determine its asymptote.

Let OACB be the logarithmic curve, having for the

origin of its rectangular co-ordinates, and OA, BO, &c., for

its ordinates on the side of x positive, and B'C, D'E', &c.,

on the side of x negative ; then, y = a^, representing the

equation of the curve, by taking the hyperbolic logarithms

of its members, we shall have log y = a? log a, so that a;.
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X- 0"^ s «t

being supposed to commence at 0, we stall have OA= 1

for the unit of length, and log BC = OB x the hyperbolic

logarithm of a, and, changing the sign of x, we have

log B'C = — OB' X log a, and so on. By taking the differ-

entials of the members of the equation log y = a? log a, we

have — — dx log a, which gives ^5— = ,

y
^ dy loga

m ^ the

vdy
subtangent = const, and =^y^ = y' log a, the subnormal [i

dx
see

(1) and (2)], which is clearly correct, since y is a mean pro-

portional between the subtangent and subnormal; hence,

joining the pcSint of contact of the tangent with the extremi-

ties of the subtangent and subnormal, the tangent and normal

required become known.

To find the asymptote : by changing the sign of x, the

equation y^=w' becomes y = a''= — ; consequently, since a

is supposed to be positive and sensibly greater than unity, it

clearly follows, from y= — , that if a; is unlimitedly great, y
Ct/

is unlimitedly small, and thence the axis of a; is plainly an

asymptote to the curve.

Eemark.—It is evident, from what is here done, and from

what has been done at p. 136, that the logarithmic curve and
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the logarithmic spiral, have resulted from different ways of

expressing the relation of a system of numbers and their

logarithms by linear description.

2. To draw a tangent to the curve whose equation is

yyy = A', and find its asymptotes.

By taking the differential of the members of the equa-

tion, since A^ = const, we have ydx + xdy = 0, which gives

ijdiX} udiXj
~z—\- x = or ^-^ = — X — the subtangent ; which,

beiag^ negative, shows that it lies in a contrary direction

from what has heretofore been supposed, or that it falls in

the direction of the positive values of x. If the extremity

of the subtangent is joined with the point of contact of the

tangent and curve, the tangent will of course be drawn as

required; Because the proposed equation is equivalent to

A^ A^
either of the forms y =— or x — — ; it is clear, from

^ X y'

the first form, that mating x infinitely great, reduces y to

an infinitesimal ; and, from the second form, it results that

indefinitely great values of y give infinitesimal values of x •

consequently, the axes of x and y are asymptotes of the

curve.

Eemabk.—It is easy to perceive, that the equation xy=A''

is that of the hyperbola, when referred to its asymptotes as

axes of co-ordiaates,

3. To find the subtangent in the layperbolic spiral, whose

equation is rO == a.

By taking the differentials, as in the preceding example,

we have rdd + Odr = ; which gives

—r- = —6, and —j— z= —rO= —a= the subtangent
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[see (3) at p. 133] ; consequently, the subtangent is negativb

and equal to a. It is hence easy to perceive how the curve

may be constructed, and its asymptote drawn, since it mani-

festly has an asymptota

Thus, describe the circle ACBD with the unit of distance

as radius, and draw the perpendicular diameters AB and

CD, taking the first of them for the angular axis and the

center P of the circle for the pole of the spiral ; then, pro-

ducing PC to E, such that PE = a, and drawing EF perpen-

dicular to it, EF will clearly coincide in direction with the

asymptote, on the supposition that the values of in the

equation rO = a are estimated from A, iu the order of the

letters ACBD, to include any number of revolutions that

may be desired.

To describe the spiral by points ; we put its equation in

a
the form r and thence, since the semicircumference of

the circle ACB = tt = 3.1416 very nearly, from knowing

a, we readily find the corresponding values of r.

Thus, by taking the arc Al equal to the radius of the

circle = unity, by drawing a line from P through 1 to

equal a, we have a point in the spiral ; and setting the arc

Al from 1 to 2, and making a line from P through

2 = jr, we have another point in the spiral; and in like
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manner, bj setting the arc 1, 2 from 2 to 3, and drawing a

line from P through 3 = „ , we have another point in the
o

spiral ; and so on, indefinitely. Hence, drawing a curve

with a steady hand through the points found, we shall have

an approximate representation of the spiral, which evidently

has EF for its asymptote.

Eemark.—It is manifest that this curve took its name

from the striking analogy between its equation rd = a, and

that of the hyperbola xy ^ a'; see page 119 qf Young's

"Differential Calculus."

4. To find the subtangent in the spiral of Archimedes,

whose equation is r = aO.

By taking the differentials of the members of its equation,

(XT'

we have -=3 = a =: its subnormal := const., and of course

T-^ -=- -^ = ?• X -T— = 7^-^:r9; consequently, the subtangent
dO dr a ' ^ •'

°

equals the length of a circular arc radius r, and angle that

between r and the angular axis ; see Young, page 118.

Eemark.—The equations of this and the hyperbolic spiral

are included in the class of spirals represented by the equa-

tion r = ad"
; noticing, that n may be positive or negative,

according to the nature of the case.

5. To find the subnormal and subtangent in the spiral,

whose equation is (r^ — a^) 6^ = i\

Solving the equation with reference to r, we have

which gives

dr ¥ y
dd / 52 eh/a^'&'+V

= the subnormal.
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Dividing r" by tie subnormal, we nave -j— =: p

—

~

for tbe subtangent, wbicb reduces to — h when = 0.

Eemaeks.—1. From '' = y («° + "m")) i* is evident that

tlie last value of / is a ; wbicb immediately follows from the

proposed equation, when put under the form &^ = -^ ^

.

Hence, if from the pole of the spiral as center with a as

a radius, a circle is described, it will clearly be an asymptote

to the spiral ; since, when /• = a, 5 must be unlimitedly

great, or must include an Tinlimitedly great number of cir-

cumferences.

2. In much the same way it may be shown that the spiral

whose equation is ^ "^^ y v^^ ~ 'm)^ li^s wholly within the

circumference of the circle whose radius is a ; the cLrciun-

ference being an asymptote to the spiral.

6. To find the subnormal and subtangent of the spiral

whose equation is (r^ — ar) 6^ = 1.

From the equation we readily get 7^ — ar= -^, and thence

7-=
I + 1/^^ + ^j, which gives

= the subnormal

;

do- 03 • r 4 + ^2 -
Q, v'^e^+l

consequently, dividing r^ by this, we readily get the sub-

tangent.

Eemaeks.—'Erom. r = -^ -\- y {-^ + W' °'' *^® proposed

equation, it follows that the circumference of the circle

whose radius = a, is an asymptote to the spiral, being an
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interior asymptote ; while the circle whose radius is a, is an

exterior asymptote to the spiral whose equation is

{ar-r^d^=l, or ^ = ^ + /(^ _ IJ,

the spiral falling wholly within the circle : see Young's
" Differential Calculus," p. 123.

7. To find the subnormal and subtangent of the paraholio

spiral^ whose equation is r^ = o?B or r -- aS^.

By taldng the differentials, we have

dr \ a a . . .

-j2 = H ~r = s—75 = ™e subnormal

;

consequently, r" divided by the subnormal, gives

r'dO
-5— := 2ffl9' = the subtanscent,
dr °

and since, from the proposed equation 6* = -, we have

r'de _ 2?'='

dr ~
a?

'

Eemark.—It is manifest that the spiral is called parabolic,

from the analogy of its equation r = dJ'O to that of the

parabola y"- = ax.

8. To find the subtangent and subnormal at any point of

the cissoid of Diodes.

A F E D

Let ABCD be a semicircle, having AD for its diameter, to
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whicli the perpendicular ordinates BP and CE are drawn, at

equal distances OF and OE from the center ; then, drawing

a right line from A to C, the extremity of the ordinate CE,

it will intersect the other ordinate at a point Gr of the

cissoid.

Eepresenting AF, FG, and AD, severally, by x, y, and a
;

the equiangular triangles AFG and AEC will (from known

principles of geometry) give the equal ratios expressed by
?/ OF "RF
- = -rT=; = (by construction and the nature of the circle) =r=

,

X AB ^ •' ^ DF

'

2/2 5^2 AF X DF AF aJ • ,,

°" ^ =m-^=-BW-=m =^^ bythenatureof

the circle ; consequently, we shall have y^ =
, for the

equation of the cissoid. By taking the differentials of the

members of this equation, we have

„ , _ Sa^dx g?dx _a? {Ba — 2x) dx

^^'^y-'^^^^'^J^^'- 2{w-xf '

, . , . ydy x^ (3as — 2.r)
which gives ^^ — _^ _l — the subnormal,

dx 2 (a — xf
^

and dividing y^ by the subnormal, we have

2x [a — x)

3a — 2a;
the subtangent.

If in y'^ = ——— we put a; = a, we shall have y^ = a" a'

a — » ^ -^ ~ a—a~ '

consequently, y^ is infinitely great, and of course there must
be two infinite values of y, one of which is expressed by

+ y and the other by — y ; which must be asymptotes to

the cissoid.
jji3 / 'V

Thus, from 7/ — we have v= ±x 4/
;" a — X if ^ Y a — x^

con-
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sec^uently, any positive value of y being expressed by

tbe corresponding- negative value must be

expressed by j/ =: — a; y =: — FGr ; of course, tbe

lower part of the curve must be identical witb the upper,

being described in the lower semicircle, after the method

that has been used in describing AGL. It is hence manifest

that a perpendicular to the diameter AD through D, when

produced infinitely both ways, will represent the asymptotes

of the branches of the curve.

Eemaek.—-It is easy to perceive, that the upper and lower

branches of the curve •will touch each other at A, and will

form with each other what is called a cusp of the first Icind^

since their convexities touch each other. It may be added,

that if two branches of a curve touch each other in such

a way that the convexity of one is in contact with the

concavity of the- other ; then they form, at their point of

contact, what is called a cusjp of the second kind.

9. To draw a tangent and normal at any point of the

common cycloid.

Let BFD represent the circumference of a circle having

for its center, OB = r for its radius, BE and EF for the
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rectangular co-ordinates of the extremity P of tlie arc DF,

the point D of the extremity of the diameter DB being

taken for the origin of the co-ordinates ; then, if the ordinate

EF in the circle is produced to G so as to make FG = the

circidar arc DF, G will be a point in the cycloid. Hence,

representing DB by «, and EG by y, we shall have

2/= EF -h the arc DE,

or since DE = a; = the versed sine of the arc DF, and EF =
the sine of the same arc, when r, the radius of the circle, is

taken for the radius ; then, denoting the arc (according to

usage) by ver sin-' a;, we shall have

y = ver sin- ' x -f sin ver sin- ' x '

for the equation of the cycloid, when the origin of the

co-ordinates is taken at D, called the vertex of the curve. By
taking the diJEferentials of the members of the equation, we

shall have

, rdx rdx — xdx , /2r — x ,
dy = -I :=z. = y dx;

V2rx — a? V2rx — x^ ^

since (see page 73) —-r-—'

r is the differential of the
'^'V""x — X-)

arc whose versed sine is x and radius r, and that
V2ra - x»

is the differential of the sine of the same arc. Hence,

dx / X X DE
'' = ^^2-rdy y 2r-x \/2rx-x' EF

'

dtG
consequently, since j- equals the tangent of the angle which

the tangent to the cycloid at G makes with EG, and that

DE
=,-=r equals the tangent of the angle which the chord of the

arc DF makes with EF, it results that the tangent to the
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cycloid at G is parallel to the chord DF of the corresponding

arc DF of the circle. Hence a right line drawn through Gr

parallel to the chord DF will be a tangent to the cycloid at

G ; and because the chords of the arcs DF and BF cut each

other perpendicularly, it follows that a right line drawn

through Gr parallel to the chord BF, and extended to meet

DB produced toward B, will be a normal to the curve

at G.

Eemaeks.—1. If in ~— = the subtangent, we put for y

its value, we shall have the subtangent =

X (ver sin- ' a? + sin ver sin~ ' x) :/.

consequently, having computed the value of this, and set it

off from , E on BD produced toward D, by joining the

extremity of the produced part with G, we shall clearly

have the tangent, as derived from the subtangent and the

point of contact.

2. Admitting the construction of the figure, and that KL,

the diameter of the semicircle KJL perpendicular to AB, is

equal to DB ; we shall have AB = BC = the semicircum-

ference DFB or KIL, arc KI = arc DF = FG = HE = LB
(since EF = HI), and of course arc IL = AL. Hence, we

shall have AM — AL — ML = arc IL — its sine IH ; conse-

quently, if y represents AM, and IM = HL = ver sin arc IL,

we shall have y = ver sin^'a?— sin ver sin'" 'a; for another

form of the equation of the cycloid ; which may be regarded

as being a transformation of the equation previously found,

when the origin of the co-ordinates is changed without

changing their directions.

3. The preceding equation clearly suggests the ordinary
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method of describing the cycloid. Thus, conceiving the

circle whose diameter is KL, to have the point I placed at

A, and then rolled (without any sliding) from A toward C,

the point I, in one revolution of the circle, will manifestly

describe the cycloidal arc, ADO ; noticing, that AC and BD
are called the base and axis of the curve, and that the cu'cle

described on the axis is called the generating circle. It

may be added, since x and V2rx — x^ are (from the princi-

ples of trigonometry), not only the versed sine and sine of

the arc IL, but of the arc IL mcreased or diminished by any

number of times the circumference of the circle whose diam-

eter is KL, we may suppose the circle to roll on infinitely

along the right line AC produced to infinity toward C, and

thereby to describe an unlimited number of successive cy-

cloids, which will all be comprehended in the preceding

equation.

10. To draw a tangent to the curve whose equation is

y-^x + 18a^ — a*-'.

By taking the differentials of the members of the equa-

tion, we have -^ =z Z -\- BQx — Qx^; consequently, the

equation of the tangent (see p. 126) Y — y = -^ (X— a;), is

easily found for any proposed value of x.

Thus, if we put 1 for a?, we have

dx

dx
= 3 + 36 33, and y = 3 + 18 - 2 = 19

;
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consequently, the equation of the tangent is

Y-19 = 33(X-1), or Y=33X-14.

It is easy to perceive that this tangent cuts the curve;

since, by putting x and y for X and Y, it is immediately

reduced to a^ — <dji? + 15* — 7 = 0, whose roots are x=l,
a? = 1, and a? = 7. The first two of these roots belong to

the point of contact, while x = 1 is a point at which the

tangent cuts the curve, having y = 257 for the correspond-

ing ordinate of the curve.

If we put a; = 4 in ^ = 3 + 36aj — Qx^, and proceed in

the same way as before, we shall get -^ — 51, and thence

the equation of the tangent to the curve at the point whose

abscissa is 4, is Y — 172 = 51 (X — 4). Putting x and y
for X and Y in this, we readily get a^— 9x^ + 24»— 16 =

;

whose roots are a; = 4, a; = 4, and x=l, the first two of

which are the same as the abscissa of the proposed point

;

consequently, the tangent cuts the curve at the point whose

abscissa = 1, and whose corresponding ordinate is y = 1 9.

Because the tangent to the curve at the point whose

abscissa is 1 cuts the curve at the point whose abscissa is 7,

whUe the tangent to the curve at the point whose abscissa

is 4 cuts the curve at a point whose abscissa is 1, it is mani-

fest that the first of these tangents must touch the convex

part of the curve ; that is, that part which is convex toward

the axis of x ; while the second tangent touches that part

of the curve which is concave to the axis of x.

It is hence evident that there must be a point in the curve

whose abscissa is between 1 and 4, such that the tangent to

the curve will not cut the curve at any other point Thus,

1*
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tlie tangent to the curve at the point whose abscissa is 3, by

putting 3 for x, reduces ^ = 3 + BGx — Grj? to ^ = 57,

and y = 3x + 18^ — 2x^ becomes ?/ = 117; consequently,

the equation of the tangent becomes Y — 117 = 57 (X — 3),

or Y = 57X — 54. Hence, putting x and y for X and Y,

we have 3a! + ISir' - 2ar'- 117 = 57 (a; — 3),

or, 3x + 18r^ - 2^;' = 57a! - 54
,

which is equivalent to

a?— dx' + 27x — 27 = 0;

whose roots are x= 3, x= 3, x = 3, and, of course, the

tangent to the curve at the point whose abscissa = 3, cuts

the curve at the same point. Because the curve changes the

direction of its curvature at 0, or at the point whose abscissa

is 3, it is said to have a point of inflection or contrary

flexure at C.

.Remarks.—1. It clearly results from what has been done,

that in curves which suffer an inflection, a line which touches

the curve on one side of a point of inflection may cut it on

the other side.

2. Because the tangents cut the curve at their point of

contact, it is clear that the points of contact of the tangents

may be regarded as the union or coalescence of the two

points in which the curve is cut by a secant, by regarding

the points of intersection of the secant as being unlimitedly

near each other. Also, because the tangent at the point of

inflection does not cut the curve at any other point, it is

clear that the tangent at this point ought to be regarded as

being both a tangent and secant ; that is, as cutting the curve

and as tangent to its convex and concave arcs at the point,

when taken separately.
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3. If the point of contact of a tangent and two unlimitedly

near points of intersection of a secant with a curve are sup-

posed to be equivalent, it is easy to perceive that it results

from what has been done, that the curve may be cut by a

right Kne in three points, or as many as there are units in

the degree of its equation. It is also manifest that curves

which admit of a poiat of inflection must be at least of the

third degree.

4. Supposingthe equation of the tangentY—y= -^(X— a?)

to be reduced to the form „ f- = 0; then, if theX — £B tix

tangent cuts the curve, or can be made (as in the question)

to cut it at the point whose co-ordinates are X and Y, such

that ^—- may be regarded as a consecutive value of

-T^, it is clear that for the preceding equation we may write

-^ = or infinity, according to the nature of the case.

See page 13.

Hence the points of inflection of a plane curve may be

found by the following

EULE.

1. Let X and y represent the co-ordinates of a point of

inflection, and suppose ^ = F(a3) = a function of x. Then,

proceed, as in finding maxima and minima, to find the

maxima and minima of F (x) ; that is to say, find those roots

of ^_w — which do not reduce —j^ to naught, and
ax "jr

dF(x)
they will correspond to points of iaflection ; if —^— = in-
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dx
finity, we must find the roots of Wz^ = Oi aii<l then, as m•" d¥{x) '

maxima and minima, find those which correspond to maxima

or minima which will give points of inflection, while, if there

are no maxima or minima, there can not be any points of

inflection.

If the roots of —->— = are also roots of —-j~^ = 0,

cZ'F (x\
we miist find the roots of—tA- = 0, provided they do not

d*F (x)
reduce —j-~- to naught ; and so on, as in finding maxima

and minima.

2. To determine for any value of x, whether the curve is

convex or concave toward the axis of x, we substitute the

value of X in -yK = —=

—

-
; then, if the result has the same

cbr ax

sign as y, it is easy to perceive that the convexity of the

curve is turned toward the axis of x, and vice versa. Thus,

jfrom ^ = 3 + 3&X- 6a^, we have ^^ = 36 - 12aj;

which is clearly positive when x is less than 3, and the con-

vexity of the curve is turned toward the axis of x ; noticing,

that —^ = gives 36 — 12aj = 0, or x=3, and that

(PF (x)—-rs^ = — 12 shows F {x) to be a maximum, when the

curve passes jQrom being convex toward the axis, to being

concave.

To illustrate what has been done, take the following

EXAMPLES.

1. To find the point of inflection in the curve whose

equation iay = x^ + vi?.
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Here we hare -^ — 'E (x) — -^ x~^ + 22?, ivHcli gives

^ = -y-i+2 and ^ = A
; consequently,

^ dF(x) „ , 1 _a „ „ 1 ,

from—r- = 0, we nave — -rX ^+2 = 0, or x — -7: and
dx ' 4 4

since ^
'^

is positive, F («) is a minimunL And because

dF (x) 1 _s—-v-^ = — jx ^ + 2 lias a sign contrary to that of y when •

X is less than j , it is clear that its concavity before as = j

is turned toward the axis of a;, but after a? = j, the sign of

d¥ (x)
y- '

is the same as that of y ; consequently the curve has

an inflection at the point whose abscissa = j

.

2. To find the point of inflection in the curve whose

equation is 3/^ = a; + a?^

From this equation we have

I + Scb''

F(a>) =
2y

, ,
<iF (a;) 6» dyl-\-^v? .

and thence _^_ =- - _ -^-^ =0,

or ^_ dy 1 + 80^ ^ {l + 3xf
dx y 2{x + of)

'

which readily reduces to £b* + 23? = ^ , whose solution gives

3. To find the point of inflection in the curve whose

equation iay =a?.
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Here ^ = F («) = 3ar, gives

—,-^-^ — 6x and —j^- = 6
dx ddb^

d^ {x)
consequently, from —-7^^ = 0, we have 6:» = 0, or a? = 0,

CbiJlj

c^-F {x\
and from /^ ' = 6, it follows tliat a?= makes F (aj) = Sis'

a minimum.

Because -^ = 3x' equals at tlie origin of tlie co-ordi-

nates, it is clear that the curve has an inflection at the origin

of the co-ordinates, where the curve touches the axis of x on

the side of x positive and negative, so that the convexity of

the curve above and below the axis of x is turned toward it

Thus the curve must be of the general form expressed by

the adjoined figure.

-X

Remark.—Any curve whose equation is cf the form

y= x", such that n is an odd positive integer greater than

one, must clearly be of the same general form as before.

4. To find the point of inflection of the curve whose

equation is y = a + (p — a;)^

^ dij
T-, , . 5 ,, , J . dF (x) 10 ,, . _iHere^ = F(.)=--(5-^)^givcs^^ = -(5-^) *

dx 9 (5 x')^
or =

-.f.
; consequently, putting this equal to

naught, we have x = h, and a point of inflection may, of

course, exist at this point From -^ = — - (fi—xy, for
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x = l, we have -p = 0, and, of course, tlie tangent to the

curve at the extremity of the ordinate y — a is parallel to

the axis of x. Prom ^^-^^ = \- '^

it is clear that when
dh {x) 10

dtjC-

X is less than 5, -rffr^ '^^ ^^ positive, and when x is greater

than 5, „ will be negative; consequently, the curve

crosses the tangent at the extremity of the co-ordinate a,

where it has a point of inflection.

1,

Thus, as in the scheme, the curve passes through the ex-

tremity of the ordinate a, the point of inflection, and touches

the tangent at the point, above and below, so that from the

nature of a tangent its convexities will be turned toward

the tangent

5. To find the point of inflection in the curve whose

equation is y = mx + (b — x)'.

As in the preceding example, we take the differentials,

and get F (a;) = ^ = m - | (5- a;)*;

hence, as before, ^-^)= Jq
^^ ~ '^^^

and thence the curve has a point of inflection.

Hence clearly, if we change a in the preceding scheme

into mb, and draw the tangent at its extremity to make an
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angle with the axis of x, whose tangent = m; then, the

curve, when drawn with reference to the tangent, as in the

scheme, will express the curve and its point of inflection, as

required.

Eemaek.—^For the curve whose equation is

y = 7nx + {x — o)',

we obtain the same results as before; with the exception,

that the part of the -curve toward the origin of the co-

ordinates lies below the tangent, while the remaining part of

it is above the tangent.

6. If, as is generally the case with spirals, the equation is

referred to polar co-ordinates, then we may proceed to find

its points of inflection as follows.

Thus, let "WSV represent a spiral having r for its pole,

T-T for its angular axis, and rS for its radius vector, which

makes the angle with rT ; then, supposing the curve to

have a point of inflection at S, it is manifest, since the

tangent to the curve at S cuts it, and touches its convex and

concave arcs at the same point, we may suppose the perpen-

dicular from the pole r to the tangent at S to be constant,

when a small change is made in the position of the point of

contact; see Yince's "Fluxions," pp. 123 and 121.

Supposing with Yince, as we 'clearly may do, that the

equation of the spiral is represented hj d — l-\
, by taking
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the differentials of its members, we have

c«0 = 7/1 I
—

I
— , or rdd = wi. |

- I dr.
\a/ a \aJ

Hence, for simplicity, referring to the figure at p. 133, we

have rdd = Sc and dr = b'o, which give, since

(SJ7 = (Soy + {ch'f,

S5'= Vr» dd' + dr" = \l + m? (^V""} dr.

Hence, drawing the perpendicular p from the pole r, to

the tangent T<, we get from similar triangles,

m (-1^m "^'-' '^^

+ m"(-) \dr ^

which agrees with the perpendicular Sy found by Vince, at

p. 124.

Because of the supposed constancy of ^, the differential

of this must be put equal to naught, and of course the

differential of its square must also equal naught; conse-

quently, we shall have

(2w. + 2) wV^^ + ^a??- _ 2mV*'" + ^ _

or 2m* r""*^ + (2m + 2) m'a'"'r-"' +^ = 0,

which readily reduces to r= ( ^—\ x a; the same

conclusion as obtained by Vince. To make r positive and

real, it. is clearly necessary that ?7i should be negative and

numerically greater than 1 ; thus, if wi — — 2, we have

r = i^\ a = (4)* X a — ^2 X a, and the equation of the
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-1 becomes 0=1-1 or - = S ', wliicli is

equivalent to r = ae~*, the equation of the spiral that is

called the lituus. If m =z — 3, the preceding equation

gives r = (^1 x a, and the equation of the spiral is

6 = (-1 or 7' = a0~»; and in like manner the spirals

whose equations s.ve r = aO~^, or r = a0~^, and so on,

have points of inflection; while all those spirals in which

m is not negative and numerically greater than 1, have no

points of inflection.



SECTION VI.

RADII OF CURVATUEE, INVOLUTES XST) EVOLUTES, ETC.

(1.) Supposing {x — x'Y + (y — y'y — r^ to be the equa-

tion of a circle, whose radius is r and the rectangular

co-ordinates of its center are x' and y'
; then, if y = F (x)

represents the equation of any plane curve, such that we

can find -- and d -r- -r- dx from it, so that they shall be
dx dx •'

the same as in the circle ; then, the radius of the circle is

called the radius of curvature of the curve at the point,

whose co-ordinates are expressed by x and y. Repi'esenting

-J- ^J p and d
-J-

-^ dx ^:^
-J-

by ^' in the proposed curve,

by taking the first and second differentials of the equation

of the circle, on the supposition of the constancy of r, x\

and y\ we shall have (y ~ y') dy \- {x — x') dx = ^
\

or, since -j- and d ~ -i- dx must equal j) and ^', we shall

have (y — y') j? + a; — a;' = 0, whose differential gives

{y~y') i*' +y + 1 = 0. From iy—y') p + x— x' = Q and

{x — x'Y + (y — y'Y = r"^ we get (y — y'f {p^ -f 1) = v-^, and

from (y—y')y=— (/+ 1) we have {y—yjp"'= OHl)';

consequently, from substitution we shall have ?'^ = ——-73-^

(»^ 4-1)^
Q^ ^-— iL.—_-^!_' 'by taking the sign of the right member

of this equation such, that r may be positive.
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(2.) There is another way of obtaining the preceding ex-

pression for r, which it may be proper to notice in this place.

Thus, from p. 129 we may clearly represent the normal at

any point of the curve y = F (»), whose co-ordinates are y

anda;, by Y — y= — ^^

—

^ '

, or its equivalent,

dx

{y-Y)p+x-X=0,
which is the same as givea above when for X and Y we put

x' and y'
;
consequently, differentiating this on the supposi-

tion of the constancy of x' and y', we shall, as before, get

(f^ -I-
i)i

r= ^—;—^ for the radius of curvature of the proposed

curve. If the tangent at the proposed point of the curve is

parallel to the axis of a?, or the axis of y coincides in direc-

tion with the normal, we shall clearly have p = 0; and

r= —,. If the curve has a point, such, that (without re-

gard to j>) p' = d -^ -r- dx = 0, then, by taking x for the

cPy
independent variable, we shall have y| = 0, or infinity,

which (since 7' = infinity) clearly shows that the circumfer-

ence becomes a right line at the point which touches and

cuts the curve at the point ; and of course the point is gener-

ally a point of injleotion, agreeably to what has been shown.

To illustrate what has been done, take the following

EXAMPLES.

1. To find the radius of curvature at any point of the

logarithmic curve whose equation is y = a^, or, taking the

hyperbolic logarithms, log y~x log a.
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Taking the differeatials, we have

-^ = dxloga or ^=j?=yloga,

Hence, representing log a \>j — , we shall have

y+l=-^;+l=^.- and y = i^,;

consequently, from r — ^^—--^ , we shall have

_ (2/° + ^^^y
. y _ ("''^ + y^Y

ni? ' m? my '

for the radius of curvature : noticing, that the center of the

cirele must (see fig. p. 142) be taken on the concave side of

the curve.

2. To find the radius of curvature at any point of the

common cycloid.

From p. 150 we have -^ = ^ = y ,

, dv , a? — r
and £=y-

Hence we shall have

y+l = |: and (^^ + l)t^|4/|;

consequently, (^' + 1)* -^ j?' = 2 */^r x (2?- — x) = the ra-

dius of curvature. Thus it is manifest that the radius of

curvature equals twice the corresponding normal of the

cycloid ; so that (see the fig. at p. 149) the radius of curva-
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ture at G equals twice the chord BF of the arc of the gener-

ating circle, which corresponds to the cycloidal arc GO.

3. To find the radius of curvature in the parabola, whose

equation is y" = ^mx.

By taking the differentials we have 'iqjdy = 4^mdx^ which

dy 2m , „ r, dp
, Imp

^'^^^
dx =^= T ' *^'' dx=P^-f-

Hence / + l=^Vl=^f-^
y y

gives (^^"+1/=
y3

'
,

(p^ + 1)- (4w.^ + v^)^
and thence r = -^—;—^ = ^

r:
—^-^ , or taking it with

2? — zrnyp °

the positive sign, we have r = ^^— ^-!- for the radius of

curvature ; or, since » = — , we have

_ (4»j.^ + y^y _ (m^ + mxf _ (normal)'

4?/i^ m' imJ'

(See Young's " Differential Calculus," p. 131.)

4. To find the radius of curvature in the ellipse, whose

equation is ay + ¥af — c?V ; a and 5 representing the half

major and minor axes.

Vx
Differentiating, we have c^yp + J^a; = 0, or »= j-,

*V
which gives

, ^ _ _5^ ^22 ^ _ ^-ay _ _ y(ay+5V) __ _5^
^ ~ aV ay ofy ~ Sff ' ~ ^•

Hence, #+1=^^, aud thence (^,^1)*=^^;

consequently, the radius of curvature r = ^j.
—- :
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and since a-y^ — 5W = — a?h^ is the equation of the hyper-

bola, its radius of curvature is evidently of the same form.

Prom what is shown on p. 128, ^-f^ =^Py = the subnormal,

and from a^py + J^a; = we have py — ^ = the sub-

normal ; and thence, from what is shown at the same place,

we have

|/(2/Hi?y)= the normal=N= /y^-)- -^a^)* = Wl,^^.

consequently, from substitution, we have r = —yj- : noticing,

since y"^ =—^ (a' — a?), that N may be written in the form

or, according to. custom, representing ^— by e', we shall

have N = ^(a^-e=cB^)*.

Substituting this value of N in r = ,^ , we shall have

r = ^ 5

—

- , in which (a? — eV)* = the semidiameter of
ab

the ellipse, parallel to the tangent passing through the point

of contact of the circle. See Young, p. 132.

a'
Because x' — j^ {h^ — if),, we readily get

a a '

consequently, if N" makes the jpigle L with the major axis

of the ellipse, we shall clearly have y = N sin L, and thence
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a '

J2 . „ i
wliicli gives N = v-ii — e^ sin- L) .

Substituting this value of N in r, we shall readily get

l^ a (1 - e")

a (1 - e^ sin^ L)* (1 - e" sin^ L)^

'

a fonnula tliat is Yerj useful in determining the figure of the

earth, L being the apparent latitude of the point of contact

of the circle with the ellipse. See Young, pp. 132 and 133.

(«H1)*
Kemabks.—1. The radius of curvature r = ^ ,— may-

be put under several different forms, which are often used.

mi d'li , , ^ di/^+ ddi? , . ,

TbiB, smoe p = -f-,^^
have^-'+ l = -'^j— , which gives

{f+ lf =
^'^^'^''^'

, Bud from p'=d^^ r&, this be-

^ J- ;, X. / (i'' + l)' {df + <Mf
comes, after dividmg by p ,

^^—7—^ = ^-^ v—- .

^ dx'd
d̂x

From what is shown at pp. 125 and 126 (see fig. at p. 125),

it is manifest, since SQ = dx and GE = dy are common to

the tangent line and curve, that SE = Vdy^+ da? must be

the differential of the right line TS and the curve AS.

Hence, if s represents an arc of a curve and ds its differ-

... .,, , {df + do^i" c?.s-« „ .

ential, we shall have r = ^^-^ -^— = -r- tor its

ddi?d^ dx'd--
dx ax

radius of curvature ; in which, without destroying its geuer

ality, we m.ay for d -j- take its differential on the supposi-
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tion that either dx or dy is constant, or a? or y taken for the

independent variable.

Thus, since d-rf- = —^ —. ^,
dx oar

d^
we shall have r = -;j-^ „ ., ;dydx — irxdy

which, by taking x for the independent variable, reduces to

dis^

r — „ , since dx — const, gives d^x = 0; and if y is

ds'
taken for the independent variable, it becomes r = —;»—>- •

If we take ds for the independent variable, we shall have

dy^ -\-da? ^:^ const, and, of course, its differential gives

dyfji
dx

_ dxd?xdry^- -^-.

From the substitution of these values in d^ydx— cPxdy,

we have d^ydx— cPxdy = ^ X (Py = ^
, and

d^ydx — cPxdy = t— - ; consequently, from the substi-

tution of these values in » = -=—^—^^5—5-, we shall have
d-ydx — d^xdy

dxds , dydsr^-^, and r = - -^.
2. By referring to the figure given at p. 126, it is manifest

from the nature of the right line, that if we pass along the

tangent and assume SQ to be constant, EQ = dy will also

be constant, while, if we pass along the curve concave to the

axis of X and suppose dx to be constant, EQ = dy will

dr^i
decrease, and, of course, d^y or -—^ must be negative ; and it
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cPv
is clear ttat d?y and -y^ must be positive, when tlie con-

vexity of the curve is turned toward the axis of x.

Hence, because the radius of curvature must always be

positive, it is clear that in applying r= ^^—,— and the

preceding derived formulas to practice, p' and (Py must be

taken with the negative sign in them when the curve is

concave toward the axis of x, and with the positive sign

when the convexity is turned toward the axis of x.

(3.) Eesuming the equation y = F («), and the equations

in — y') p + X - x' = 0, {y — y') p' = — {f + 1), from page

163, it is manifest that if we find x and y from any two of

these in terms of x' and y' and known terms, that by sub-

stituting them in the third equation we shall have an equa-

tion between x' and y\ which -will be the equation of the

curve in which the centers of all the radii of curvature of

the proposed curve must lie.

Where it is to be noticed, that the equation y = F («) is

called the involute of the curve thusfound ; which is called

the evolute of y ^^^ (»), or of the involute.

The reason for these denominations is plain, from the cir-

cumstance that we may regard the involute as being generated

by the unlapping of a thread placed in contact with the

evolute, in such a way that the part unlapped at any point

equals the corresponding radius of curvature, when its ex-

tremity wUl be in a point of the involute. Where it is

manifest, that the radius of curvature is always a tangont to

the evolute, and constantly perpendicular to a tangent to the

involute at its extremity.

For convenience in practice, we may give the last two of

the preceding equations the forms
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y'^y+^-f^
and v = .-^!+l),

wMcli may be freed from p = -j- and^' = d-£--i- dx, by

finding their values from y = F («), the equation of the in-

volute, or that of the proposed curve ; when we may proceed

as directed above.

To illustrate what has been done, take the following

EXAMPLES.

1. To find the evolute of the parabola, whose equation is

Here for y = F («), we have y^ = ^mx ;
which gives

dv 1m , , ,dy , 2»m im-
jo = -7^ =— and » = a -r- -i- aaJ = ^^-ir- — r-^ dx y -^ dx y y
Hence we have »' + 1 = „

—— , and thence
y^

and y =1 — (4:rn?y'y. We also have

?/ \ 2m „ „ x' — 2m/ If \ "Am,

~ 3 '

consequently, by equating these values of a?, we readily get

4
y'^ = ^ (aj'— 2m)'-=- m for the equation of the evolute, which

is of the form of the well-laiown equation of the semicubical

parabola If the origin of the co-ordinates is moved in the'

direction of x positive through the distance 2???., or that we

put x' — 2m ^=x and use y for y', the equation of the evo-

lute may be more simply expressed by the form y^ = ^i^-
Ji i Til/

Thus, let CAD represent a parabola having AB for its

axis, A for its vertex, and E for its focus ; then, by setting
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off El in the direction of x positive equal to AB, it is clear

that we shall have Al = 2»i for the radius of curvature of

the parabola at its vertex, which equals Am -e- 2, or half its

42!"

principal parameter, or latus rectum. Then, since y" = ^y~'

gives 2/= ± |/ -j— , we construct the curve HIK, having 1

/"4?
jr-,;— at the distance x
27m

above IB, and ?/ =: — y -^i^~ at the distance x below IB
;

consequently, a curve passing through all the points thus

fouad, will represent the evolute of the parabola, or the semi-

•cubical parabola.

Supposing the evolute to be correctly constructed, then a

thread stretched from A to I, and lapped on the branch IK
so as to coincide with it, and made fast at its unlimitedly

remote extremity, when unlapped, by moving the extremity

A toward C and keeping it stretched, the point A will clearly

describe that part of the parabola represented by AG. By
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lapping the thread on IH instead of IK, we may in like

manner describe the branch of the parabola represented by

AD.

Eemark.—Mr. Young, at page 140 of his " Differential

Calculus," says that the evolute does not extend on the

side of X negative, or from I toward A, since x negative in

y^ — q=— will make y imaginary, which is undoubtedly true;

yet from the first form y'^ — —^—^r^ of the evolute,

which, for x — in the second form, gives x' = 2m, clearly

shows that the point A is so connected with the evolute, that

AI must be taken in conjunction with it, as has been done

in the preceding construction ; and it is manifest that like

observations will be applicable in all analogous cases, /^.-t ^ v>

2. To find the evolute of the common cycloid, /i cfc v-'«'^-^

From Ex. 2, at p. 165, we have it.^U'vVyt.i- m^tJ^

dy _ _ /2r — x
s , < _ 2r

dx ~ ~ f aj '
~

a?
'

7*

and
^'^~'x^/{2rx-^)''

hence, y' — y + -—r~ and x' = x — iijJL-. 1
^

from p. 171, will, by substitution, become

y' — y — 2 V2rx — x' and «' = as + 4^ — 2a! = 4/- — a?.

Hence, from the substitution of the value of y, from p. 150,

in that of y\ we shall have

y = ver sin~*a! + sin ver 8in~'a3 — 2 \/(2,rx — ar)

= ver sin"'a;— \/{^rx — x'),

or y'= ver sin~* a; — sin ver sin"'a;; which, from what is
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shown at p. 151, is .the equation of a cycloid, the origin of

the co-ordinates being at the extremity of its base. "From

as' = 4r — a? we have a; = 4r — »', from which it is manifest

(see fig. at p. 149), since DB = 2r and that D is the origin

of the co-ordinates, that if DB is produced below B to the

distance DB or 2/-, and then cb' subtracted from 4/-, we shall

readily get — a?= a;' — 4r ; which clearly shows that we may
change the origin of the co-ordinates from D to the point

distant %r below B, and reckon the positive values of x from

the new origin upward instead of downward, when the origin

is at D.

Hence, supposing ABC to represent the proposed cycloid,

by removing the origin of the co-ordinates from the vertex

B to E, so that GB = (tB, we may reckon a;, positive from E
toward G, and y' = ver sin-' a; — sin ver sin-'a;, the equa-

tion of the semicycloid EC, whose semibase is EL and vertex

C, will be that of the evolute of the proposed semicycloid BC

;

and in like manner the semicycloid AE, whose semibase is

EM and vertex A, is the evolute of the semicycloid BA

:
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the proposed semicycloids and their evolutes being clearly

identical.

Eemarks.—1. The cycloid DBF being drawn (as in the

figure) equal to the proposed cycloid ABC, it is evident that

the semicycloid EF and ED will be evolutes of EC and EA

;

and so on, indefinitely, for semicycloids that may be de-

scribed below the cycloid DBF, like EC and EA below the

cycloid ABC. And it is easy to perceive that a series of

cycloids may in this way be continued indefinitely, both

above and below the proposed cycloid ABC.
2. To describe the involutes by the evolutes, we take a

thread equal to the semicycloidal arc EC, and fasten one of

its extremities at B ; then, having lapped it on the arc EC,

we carry the extremity C from C through B to A, when the

cycloidal arc CBA will evidently have been described.

To describe the arcs EC and EA, we use two threads tied

fa the points D and F, equal in length to the arcs DE and

FB ; then, the extremities at B, being carried from E to A
and C, will describe the semicycloidal arcs AE and BO.

3. To find the equation of the evolute of the ellipse.

Prom p. 166, we have aPy^ + b^a?= aP¥ for the equation

of an ellipse, and

¥x , , ¥
^ ay ^ ay

a.

and p^+l = ^t^, and ^-, = %

.

Hence, from p. 171, the equations

,-, +^ and .-.-^(^), ,

become

v(aV + 5V) , , (BfaV + i^'V)
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From the equation of the ellipse we have ay= a^5"— J"V,

which, substituted for ay in the value of y', reduces it to

y^ ^y — ^—!=

2^j
'——^, which, putting a^—b-^= &,

is easily reduced to

and, in a similar way, we have x' = —j-

.

Hence, we readily get

r -f or y==(-|-), and «^= (-^) ;

consequently, from the substitution of these values of y" and

a^ in ay + 5V= aW, we have a= (^) + 5^ (^-) = a'b-

or (5y=)* + (a^'as'^)* = {hy'f + {ax'f = c',

and of course (5y')* + {ax'f = (a'&°)* is the equation of the

evolute of the ellipse.

By putting x' = 0, the equation reduces to

(5;/')* = (a= - V'f,

0?
or its equivalent by' = a^ —V, which gives y' — -^— b\ and

in like manner, by putting y' = 0, the same equation gives

x^ = a .

Thus, let AB =: 2a and CD = 2S be the major and minor

axes of the ellipse, and let the points o and d be taken on

a^
the minor axis at the distances -, b from the center, while

'

a and h are taken on the major axis at distances equal to

a from the center ; then, curves drawn, as in the figure,
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with their convexities toward the axes, so as to touch them

at their extremities, will represent the evolutes of the ellipse.

a? ¥
It is manifest that -^ and — are the radii of curvature of the

a

ellipse at the extremities of the minor and major axes.

The ellipse may be described by means of its evolute as

follows

:

Take a thread, in length equal to the arc cb + B5, and

fasten one end of it at c, and lap it on the arc cJ, and bring

down the remaining part of it to B ; then, carry the thread

around from B to A, and its extremity B will describe the

half of the ellipse represented by BDA ; and it is manifest

that having fastened the extremity of the thread at t7, we

may in like manner describe the remaining half of the curve,

represented by BCA.

Because the arc c5 + Bi = the arc cb + -^ = P it

follows that the arc cb = ¥ ¥
^ = —^^— ;

consequently,

since the four branches of the evolute are clearly equal to

each other, we shall have 4 -

ab
for the entire length of

the evolutes. Hence, if 5 is very small in comparison to a,

it is clear that the arc cb will differ but little from -=-

b
8*

con-
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sequently, the points c aud d will fall ultimately without the

ellipse, and the semi-ellipses BDA and BCA will have for

their limits arcs of circles whose centers are at c and «/, and

are drawn through the points B, D, A and B, C, A.

Eemabks.—1. Eesuming the equation

of the evolute from p. 176, then, since the equation

ahf + />V =:z a^h^

becomes a^y- — 5V = — a?h',

the eqiiation , of an hyperbola, by changing Tr into — J°,

it clearly follows that if for l" we put — V^ in the preceding

equation of the evolute, it will be reduced to

or its equivalent {ax'')' = (a^ + Vy + (Sy')-''

the equation of the evolute of the hyperbola. If we put

y' = 0, the equation reduces to

ax' = a^ -irP, or x'= a -] ,

a

which clearly shows that — equals the radius of curvature

at the extremity of the major axis (2a) of the hyperbola.

By assuming y', we can, from the above equation, evidently

find the corresponding value of as' ; and in this way find any

number of points, at pleasure, of the evolute.

2. It is easy to perceive that we can not, from the preced-

ing equation, find the evolute of the conjugate hyperbolas

;

which clearly shows that their evolute is difierent from that

which has been found.

To find the evolute of the conjugate hyperbolas, we must

proceed in much the same way as before, by regarding h as
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their principal semi-axis, and a as its semiconjugate ; conse-

quently, we shall, as before, have (Jy')* = {^ + ^^ + («*'')*

for the equation of the evolute of either of the conjugate

hyperbolas. By putting a;' = in this equation we readily

get hy' =z c? -\- S', which gives y' = 5 + -^, and shows that -r

is the radius of curvature at the vertex of either of the con-

jugate hyperbolas. By assuming x' we can, from the pre-

ceding equation, calculate y\ and thence find, at will, any

number of points in the evolute.

(4.) We will now proceed to show how to find the radii of

curvature of curves, whose equations are expressed in polar

co-ordinates.

Supposing, as at p. 131, that r cos w = — r cos := a; and

?" sin w = r sin 6 = y, by taking the differentials of

x-= —r cos 9 and y = r sin 0,

on the supposition that Q is the independent variable, we
shall have

dx=^ — cos B dr \-r sin ddB, dy = sin Odr + r cos 0dO,

whose squares added give da^ + dy^ — dr' + r^dff'.

. , „ ,dy , / sin Qdr + r cos OdQ\
And from d-f =d\ -5 .

——-

1

dx \— cos Mr -f- r sm ddQl

we readily get

d-ydx - cPxdy = — f^dS" — Idr'dd + r<^rdB
;

consequently, since (see p. 168) the radius of curvature, r\

{dy'- + dxf _ {dr^ + r\Mf
, g , c?// ~ d'^ydx — d-xdy '

dx

we shall of course have for r' the expression

{d,^ + r'^d^f'
_

(_ r'd&' — Mi^ + rdfr) dJB
'
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noticing, that the expression can be put under the more

simple form,

^={©' + r'
dO'

which must be taken with the positive sign.

If N represents %)iq polar normal, since

N== ^{dr'' + i»de-')^de,

~W
we readily get r'

"Hi)'-
d^r'

~de'

to he taken with the positive sign for the radius of curva-

ture in curves expressed in polar co-ordinates ; noticing,

that r stands for tbe radius vector in the polar equation.

EXAMPLES.

1. To find the radius of curvature of the spiral of Archim-

edes, its equation being r =^aO.

Since -y;: = a, we shall have ^75 = 0, and thence
dQ''

^^=ti^+A =-(! + '

[dej

and

give r' — —^—-rr- for the radius of curvature.
2 + 0^

2. To find the radius of curvature of the spiral whose

equation is r = ad",

dr
Since

dd
: na6"~\ we have

and
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also, since -^ = «(«, — l)a0"~^, we sliall have

^!i + 2 (^5)
- ^£ = ^"^"' + 2«-V0^"-2 - w (w - 1) a^e^"-"

Hence we readily get r' = a6"~' (n^ + 0^)* -^ (6^ + w^ + yj)

for the required radius of curvature.

3. To find the radius of curvature of the logarithmic

spiral, its equation being r = a'.

Since — = a* log a and -^ = a' (log of, we easily get

N' =«««[! + (log a^]^

.•^ + 2(§)2-r^ = a^''[l + aog«)T;

consequently, we shall get r' = a* -j/[l + (log af]^ the same

as the normal : noticing, that log a means the hyperbolic log-

arithm of a.

4. To find the radius of curvature of the curve whose

equation is ?> = a cos d.

dv dP'T*

Here we have ^77 = — a sin 0, and -^ =: — a cos 0, and,
do ad'

a, and thence the radiusof
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N»

r= + 2

and

[del'

-W
f^ + 2

Idr \2_ d'r

dr

dd'

dr

d'r ISdd

"-AS)'-
are the projections of tlie radius of curvature r' on the radius

vector r, and a. line perpendicular to r; noticing, that the

first of these projections is sometimes called the co-radius

of curvature. Representing

r —
dr

and m + r=

r^+2

dr

dO

\dd/ '

dO'

a de^l

by y' and x', we shall have

/drV

r +
'© + 9'^

"-^m- d(fi

and

/drV
J
dr

~ [del ~^'de
/dry

(ddl
'r^ + 2

d^
' d^

— x\

for the rectangular co-ordinates of a point in the evolute of

the proposed curve, whose origin is the same as that of the

proposed curve.

Thus, in the case of Example 3, we have found in the
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logarithmic spiral r' = a' |/[1 + (log a)^] = N, the normal,

and, of course, we shall have r — r' x ^=r — r-=0 —y'

;

so that the center of the evolute coincides with that of the

proposed spiral And

, dr ^^ dr dr ' , ,

or, representing x' by r", we shall have r" = a' log a ;
con-

sequently, since r = a^ , -we shall have — = log a, a con-

stant ratio. Hence, since r" is perpendicular to r, and has

a constant ratio to it, it is manifest that the evolute must be

a logarithmic spiral similar to the proposed spiral, their radii

vectors making equal angles with their arcs.

(5.) There is another method of finding the radius of

curvature, that is often very useful in polar co-ordinates,

that may be noticed in this placa

1. Thus, let the curve ABC be supposed to be described by

the extremity of PB = r during its angular motion around P
in the same plane, in the order of the letters A, B, C ; then, if

BKL is the circle of curvature at the point B, having for

its center, and its radius OB = R drawn to its point of con-
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tact witli tlie curve ABO, or the tangent Tt of the curve at

the same point B, by drawing PD and PF perpendicular to

BO and the tangent, we shall have the right triangle POD,

which gives

P0°' = PD= + OD'- = PD°- + (BO - BD)=

=PD^+ BO^- 2B0 X BD + BD^= PB^- 2B0 x BD + B0^

which, since PB = ? and OB = E, by representing BD = PF
by V, becomes PO^ = r* — 2yE + E- ; or, denoting PO by r',

we shall have r"' — r^ — 2flE + W.

Since the points P and are fixed for the same circle (by

regarding the curve and circle as having a very small com-

mon arc), we may take the differential of this equation, on

the supposition of the constancy of r' and E, and shall

thence get rdr — 'Rdv = ; which gives E = —r- ^^r the re-

quired expression for the radius of curvature. Admitting

the construction of the figure, the equiangular triangles PBD
and LBK clearly give the proportion PB : BL : : BD : BK,

or its equivalent r : 2B, : : v : BK = = —=— = the chord^ r do

of curvature which passes through the pole, or origin of the

co-ordinates ; which is a result that is very useful (as is the

radius of curvature) in the doctrine of central forces. (See

Vince's "Fluxions," pp. 149 and 242, together with New-

j,
ton's "Principia," vol. i., p. 68, &c.)

There are one or two forms of v that are often useful,

which it may be well to notice.

2. Thus, if the angle PBF made by r and the tangent T<, is

represented by <p ; the right triangle PBF gives

PF = v^^r sin </>.

Also, if PGr is assumed for the angular axis, and the
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angle GPB = • tlien we shall, from the principles given at

p. 134, get . = . X ^.-^^ =
Tf^Tfff

From this expression, we readily get

dv

A''-a}
consequently, E = ri- will be reduced to the form

,l-{-(S)r
d&^

which agrees with the form of r', the radius of curvature,

found at p. 179 ; noticing, that the radius of curvature must

be taken with the positive sign.

Hence, it follows that the equation of the evolute of the

proposed curve may be found from the expressions for y'

and x', given in the remarks at p. 182. It may be added,

that having found E, we can easily find PO or v\ from the

triangle FOB, and also the angle BPO; consequently, the

evolute can be constructed by points.

EXAMPLES.

1. To find the radius of curvature in the ellipse when re-

ferred to polar co-ordinates, the origin being at the focus.

Taking a and 5 for the half major and minor axes, we

have, from a well-known property of the curve, the equation

2a — r l^ , J.™ ^. , . adr ¥dv= -^ ; whose dmerential gives —^ = —j-, ana thence
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rdr -, 7^ ¥-^ = E = -g X -

,

av V a

rdr 1^ V' W= E = -g X - . If we put J?
= - = the semiparameter

7^
of the major axis, this becomes E = -, x jp ; which is easily

shown to agree with the value of the radius of curvature

found at p. 167.

This expression will enable U5 to find the radius of curva-

ture either of the eUi/pse, hyperbola, ot parabola, by putting

p for \he. parameter of the major axis, and observing that

r equals the distance of the point of the curve whose radius

of curvature is to he found from, thefocus or origin of the

co-ordinates, and that v equals the perpendicular from tlie

J'ocus to tlie tangent to the curve at the same point.

2. To find the radius of curvature of the parabolic spiral

whose equation is r = a0*.

(i7* 1 — 1

By taking the differentials, we have -^^ -aO *, and

thence get (|)^ -f ^ = ^ «=.- + a^O = |^ ^^^1

;

consequently, we shall get

v/((*)V.}-(^+«''

or shall have v = . Hence we readily get
(46= + 1)*

^- „ , aW a(W + lf
consequently, from rdr= —j^— we get E = —^^ i-, as

2 (40= + 3)#
required.
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3. To find the radius of curvature of the equiangular or

logarithmic spiral.

From r sin ^ = v, since (j) is constant or invariable, we

7'uV
get dv = sin (j>dr ; and thence from -5— , we easily get

E = -:—
- , as required. It is hence manifest that E and r

sm <!>
^

are the hypotenuse and leg of a right triangle, having the

angle opposite to ?' equal to ^ ; consequently it follows, as at

p. 182, that the evolute must be an equiangular spiral simi-

lar to the proposed spiral, and having the same center.

(6). Sometimes, as in finding the radius of curvature in

(2), at p. 164. by regarding the evolute as being formed by

the intersection of successive normals to the involute, we

obtain a convenient method of finding the locus of the in-

tersections of lines or surfaces drawn according to some law,

which are sometimes called consecutive lines and curves.

EXAMPLES.

1. Suppose we have the equation xz^ — yz + a=^ 0, such

that z is arbitrary; then it is required to find the curve

resulting from the elimination of z from the equation, on

the supposition of the constancy of y and x when z varies.

By putting the differential coefficient with reference to z

equal to naught, we have 2a!s — y = 0, which gives z = -^— .

Hence, putting this value of s in the proposed equation, we

have ^ -^-|-a=:0, or y^= 4aKB, the equation of a
4:33 4:9/

parabola whose parameter equals 4a.

Eemark.—-If the proposed equation had been

xs' — yz^ + a = 0,



188 EXAMPLES IN INTERSECTING LINES.

by a similar process we should have found 2 = — ,
and

27
thence have obtained y' = -^ aar, the equation of the semir

cuMcal parabola, for the result of the elimination of s from

the proposed equation.

2. Given x"" + y'^ = r'^ and {x — xj + (//
- y')' = ^'

for the equations of two circles, to eliminate x' and y' from

them.

By taking the differentials of the equations by regarding

x' and y' alone as variable, we have x'dx' + y'dy' — 0, or

du' x'

J-,
=

> , and from the other equation we in like man-

dy' X — x'

y — y'
ner get -p-, = —

^^ _ '^^, ; consequently, from equating these

values we get - = 7, or x'y=y'x, which gives

«' = — . Prom the substitution of this value of x' in
y

x'^ + y'° = r'\ we get y' = —-tt^.—^ , which reduces
" ^/{x^ + y'')'

x' — — to as' = ,, .,
,

—
TT. Hence, from the substitution

y V{^ + y)
of these values of y' and x' in (x — x'f + {y — y'f = r',

we readily get ar" + y^ — 2/"' ^(ar' + y^) + r'^ — 7^, or by ex-

tracting the square root of both members of the equation,

we have ^(a? +y^)— r' — ± r,

or its equivalent, a? + y^ — (-/•' ± ry,

equivalent to two circles, represented by x' + y^= (r' + rf
and ^ -\-y^= {r'— rf. Hence, the series of circles repre-

sented by (x — x'f + {y — y'f = 1^, are touched on their

outside and inside, or said to be enveloped by the circles
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x^ + y^ = (/ + rf and x" + y"-— (/ — rf, which clearly

have the same center as the given circle x'^ + y'^ = r'\

Remark.—The preceding solution is merely a modifica-

tion of that given by Young, at pages 146 and 147 of his

"Differential Calculus."

3. Supposing ACB to be a triangle, such that the position

of AB being changed, the area of the triangle shall be inva-

riable, then it is required to find the curve to which AB
shall always be a tangent

/c

Representing AC and CB by x and y, and assuming

y^ax + b for the equation of AB when referred to x and

y as axes of co-ordinates, by putting x= 0, we shall have

2/=& or CB = 5; also, by putting y = 0, we have

ax +i=^0, which gives a; = or AC = .

Because, from the principles of mensuration, the area of

J ^- 1 A/-ir> ACxCBsinangC i^sinC .„
the triangle ACB = 2_ — ^— . jf ^^q

represent this by s, we shall have s = — —^r or

M „;„ n
Hence, from the substitution of a, the

2s

7 1 S^sin C , ,

equation y ^: ax + o, becomos y = — —-— x + oy whose

differential coefficient taken by regarding h alone as variable,

gives +1=0, which gives h = —.—p^ . Sub-° s
° a!sinC



190 EXAMPLES IN INTERSECTING LINES.

fitituting ttis value of J in y = ^— x + i, it becomes

lent ajy = n--—pi ^^^ equation of an hyperbola between its

asymptotes, as required, since tbe curve must clearly always

touch the side AB in all its positions.



SECTION vn.

MULTIPLE POINTS, CUSPS OB POINTS OF EEGEESSION, ETC.

(1.) Multiple Points.—^If two or more branches of a

curve cross each other at a point, the curve is said to have

a multiple point of the first Icind ; the point being called

double, triple, &c., when two, three, &c., branches cross at

the point : also, when any number of branches of a curve

touch each other at a point, it is said to be a multiple point

of the second kind.

lff{x, 2/) = represents the equation of a curve, it is

manifest that we may find its multiple points of the first

kind, by determining those points of the curve where we

-^ j
= ^" ; such, that w is a positive integer equal to

the number of branches that cross each other at the point,

dy
and -^ ^= p represents the tangent to any one of the

branches at the same point.

It is hence manifest, that to find p, we may differentiate

y (aj, 2/) = n times successively, by regarding x and y as

being independent variables, or by considering dx and di/

each as being constant or invariable, when the successive

differentials are taken.

EXAMPLES.

1. To find the multiple point of the curve whose equation

is a]^ + cxy — hx^ = 0, at the point whose co-ordinates are
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X = and y — 0, or at tte origin of the co-ordinates.

By taking the successive differentials, we have

2aydy + cxdy + cydx — Zi3?dx = 0,

and iady"- + %cdxdy — Gbxda? — ;

which gives

dx' adx a a a

By putting a? = in this, we have p^ + — — 0, which
it/

C G
gives ^ = 0, and ^+- = 0, or^= ; consequently,

the curve has a double point at the origin of the co-ordinates;

one of whose branches touches the axis of x, since one value

of p equals naught, and the other branch makes an angle

G
with the axis of x, whose tangent = .

CL

Another Solution.—Solving the equation by quadratics,-

ex
,
ex (^ 2ahx „ \ 1

we have y — — g-±g-(lH 2
,
«xc. I ; whose roots

ix^ 5 , ex hx^
^ ,

are v = > &c-i and y = [-, &c.

By taking the differentials of these values of y, regarded

as a function of x, we get

dy 2hx . J dy c 2hx .

-^ — , &c., and -/ = h, &c.

;

dx dx a e

consequently, putting x = 0, we get -5^ = ^ = 0, and

-^ = , the same as before.
dx a

2. To find the multijfle points of y' = (x — a)'a\

By taking the differentials, we have
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'2ydy = 2 {x — a) xdx + {x — aydx,

-which is satisfied so as toleave dy and dx undetermined, by
putting y = and a; — a = Oor x = a; consequently, if

there is a multiple point, it must evidently be at the point

represented hj y = and x= a.

To find whether y = and x=: a correspond to a mul-

tiple point, we dififerentiate

2ydy = 2 (x — a) xdx + {x — afdx,

by regarding dx and dy as constant, and get

2dy^ = 2iBc£a!= + 4 (« — a) dx',

which, by putting a? = a, reduces to I -v- ) = a, or dy = 4/a

and -^ = —;(/»; consequently, a double point exists at the

point whose co-ordinates are y = and x= a.

3. To find the multiple points of the curve whose equa-

tion is y° = J'sB + 253!^ + x\

Here we have 2ydy — V'dx + 4:bxdx + Sx^dx, which is

satisfied so as to leave dy and dx undetermined by putting

y = and ¥ + ibx + 3a:^ = 0, or x=. — h. Hence, as in

the preceding example, we have 2dy' — iida? + Qxdi^, or

I -j-\ = 45-^ 6a3 ; or, putting x= —5, we have (-£-) = — 25

;

consequently, -5^ = V— 2b and -^ = — V— 25, which is

a double point when 5 is negative. If, however, i is posi-

tive, the point represented by y = and a; = 5, must clearly

be detached from all the other points of the curve, though

connected with them by the same equation; and 'Such a

point is called an isolated or conjugate point. (See " Cal.

Dif.," p. 101, of J. L. Boucharlat; and Young, p. 150.)

9
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4. To find tlie multiple points of tlie curve, whose equa-

tion is 2/* = (» — cCfa?.

By taking the differentials, we have

di/'dy — 3{x — afxHx + 2 {x — dfxaix,

which, by putting y == and a; = a, leaves dy and dx unde-

termined
;
consequently, if there is a multiple point, it must

clearly correspond to y^^O and x=a. Hence, taking the

successive differentials, regarding dx and dy as constant, we

readily get (-^1 = ar, or, putting a for ar, we have

Since this has but one real root, it clearly results that the

point corresponding to y = and cb = a is not a multiple,

point.

Remarks.—^It may be shown, in much the same way, that

the equation y" = (a? — afx"", when n is an odd integer, can

not have a multiple point; and that when n is an even

integer, it has a double point

5. To find the multiple point of y^ = (x — afx.

It is easy to perceive, on account of the inequality of the

exponents of y and x — a, that the curve represented by the

proposed equation, can not have a multiple point of the first

kind ; consequently, we will proceed to determine whether

it has a multiple point of the second kind.

Since by putting x = a, the equation is satisfied, and gives

y = 0, by taking its differentials we have

2ydy= 4 (a? — a^xdx -\- {x — aydx,

which is also satisfied by putting x = a and y = 0, and by
taking the differentials of this by supposing y to be a func-

tion of X or dx constant, we have
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1y^-y + Mf = 12 (a? — aJM:^^ + 8 (a? — dfdj?,

wliicli is satisfied by putting ,•» = «, j' = 0, and dy— 0, wliicli

leave cPy undetermined. By taking the differentials as be-

fore, we bave

2yd^y + Myd'y = 24: {x — a) xdi? + 36 (« — afd'i?,

which is also satisfied by putting x=:a, y = 0, dy = (i, and

leaves d'^y undetermined.

Taking the differentials of this, we have

^ydSj + Myd'y + 6 {dhjf = 24»<fa;* + 96 (« - a) d^
;

which, by putting a?= a, y= 0, cZy = 0, is reduced to

6 (c^V)' = 24a(fai^

-j~) =4a, or, extracting the square

roots of the members of this, we have

^ = 2,/a and ^^=-2^.

It is hence evident that the curve has two branches that

touch the axis of x on opposite sides, and each other at the

point whose co-ordinates are cc = a and y = 0, since dy ^0
Qfil

OT ~f-:= 0: and that the order of contact of the branches
dx

with the axis of «, and with each other, may be expressed

Otherwise. By taking the square root, of the members

of the proposed equation, we shall have y = (£b — of i^x.

Which, by taking the differentials of its members, gives

^ = 2 (aJ- a) i/a: + 2 (« - <ifx~^,

whicli, by putting a?= c^, gives ^ = 0.
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Hence, taking the differentials again, gives

^ = 24/a! + 2 (« - a) a;"* - 5 (a? - afo^'^;

which, by putting x =^ a, reduces to -~^— ±2\/a] since

the square root ought to be taken with the ambiguous

sign ±. Hence, as before, two branches of the curve

touch the axis of x on opposite sides, and each other at the

point (y= 0, x= a) with contact of the order -=^ , and of

course the curve has a double point of the second kind at

the point (r/ = 0, a; = a).

Remarks.—It is manifest that this process is more simple

than the preceding. And it is manifest that in either method

we may take the differentials of the right members of the

equations (since it will not affect the results), without taking

that of X, the factor of {x—af, {x—df, &c.

6. To find the multiple point corresponding to y = and

83 = a in the curve whose equation is y = (a? — of \/x.

Since this curve evidently can not have a multiple point,

of the first kind, we proceed to determine the multiple point

of the second kind (by regarding \/x as constant), as in the

otherwise of the preceding example. Hence, we have

dr/ = 3 {x — af^xdx, which for x = a gives -J- = 0, and

shows that the curve touches the axis of x at the point

(y = 0, xz= a). Taking the difierentials again, we have

^ = ^{^ — a)i/«, which a; = a reduces to 3-^ = 0, and.

d^
da?

point (y = and x = a): By taking the differentials again,

of course, the curve has contact of the order -t^ == at the
dor
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we have -^ = 6|/a!, whicli, by putting a for a;, and taking

± before tlie square root, gives -r^ = ± 6j/a; consequently,

tbe proposed curve bas a double point of the second kind, at

the point (y = 0, a; = a), whose order of contact is expressed

by ^
Eemarks.—1. If y = (« — a)"a;'"+ 5, in which m and w

are positive integers, then, it is clear that we may pro-

ceed in the same manner as heretofore to find the multiple

points.

Thus, if w — 1, by taking the differentials we have

-y- = «"», or l~l = a?; and putting a for aj, as heretofore,

we have (-^1 = a, which, when m is an even number,

gives [-/-] = ± V'«; which clearly gives a double point

of the first kind, at the point {x = a, and y = J) ; noticing,

(Ml/

if m is an odd integer, that -^ = ^/a is not a multiple, but

a single point, since f'a can not have but one real odd root,

the remaining roots being repetitions, imaginary or impossible.

If n is greater than 1, and m odd, the curve will have a

single point, the order of contact being expressed by -^ ;

but if TO is even, the curve will have a double point of the

second kind, expressed by ± \/a, at the point {x^ a and

y = h); see Young, pp. 151, 152 ; observing that Mr. Young

is clearly incorrect, when he says that a radical of the third

degree gives a triple point, and a radical of the ?nth degree
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will indicate that m branches of the curve meet at the point

(a; = a and y = h).

2. If f{x, y) = represents an explicit function of x

and y, then, by finding y in terms of a?, after the manner

of solving equations, and then proceeding as before, we may
find the multiple points, as above.

(2.) Cusj>s, or JPoints of Jiegression.—A cusp, or point

of regression, is generally considered as a species of double

point, at which two touching branches of a curve stop or

terminate. If the convexities of the branches touch each

other, the point is called a ousp of the first kind; while, if

the concavity of one branch is touched by the convexity

of the other, the point is said to be a cusp of the second

kind.

It is evident, that the particular co-ordinates of points

where cusps exist must be found by particular considera-

tions, and not by the application of Taylor's Theorem ; for

otherwise the branches would be continued through the

cusp, and make it a multiple point, instead of a cusp;

against the hypothesis.

Eemark.—When more than two branches of a curve

touch each other and stop, it is plain that we may regard

them as being cusps, and proceed to treat them in the

same way.

EXAMPLES.

1. "To find the cusps of the curve whose equation is

y^ =x*{l — a?f = £B*- 3a!» + 3a^— a^"."

It is manifest that the equation is satisfied either by put-

ting a; = and y= 0, or by putting x= ±1 and y = 0.

Hence, to determine which of these gives cusps, we may
take the dififerentials of the members of the equation on the
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supposition of the constancy of dy and dx in the successive

differentiations. Hence we shall have

ydy = {2a^' — gar* + 12;»^ — 5x') dx,

which is satisfied hj x — 0, or a; = ± 1 and y = 0, while

dy and dx remain undetermined. By taking the differen-

tials again, we have

df - (6a!= - 45*^ + My^ - 45a;-^) d^,

which, by putting £b = or aj = ± 1, gives

consequently, by extracting the square root, we have

J = 0, and ^=-0,
dx dx

both when a? = and when a; = ± 1.

It is hence clear that the axis of x is touched on opposite

sides at the origin of the co-ordinates, and at the extremities

of the axis of a;, represented by a; = ± 1, or by a; = 1 and

a; = — 1, on the positive and negative sides of the axis.

Where it is manifest that the extremities of the axis must

be cusps of the first kind, since the convex branches of the

curves touch the axis of x and each other at the extremities

of the axis, and stop at those points. It is also plain that

a; = and y = correspond to a double point of the second

kind, since the curve is evidently continued through the

origin of the co-ordinates.

Otherwise.—Resuming the equation y^ := a;* (1 — a;^/, to

find its cusps we may differentiate successively y"^ and

(1 — off without aj*, or by regarding x as constant, except so

far as it is contained in I — a?. Hence we have

•iydy = — 6^ (1 - xjdx
;
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and differentiating again mtli reference to (1 — aFf, as before,

we have 2 {yoPy+df) = 24a^' {1 — x^daP;

and differentiating again with reference to 1 — aP, we have

2 (j/cPy + BdycT-y) = — 48a5'cto'.

By putting » = ± 1 and y = in this equation, we have

consequently, the curvatures at the points a" = ± 1 are of

higher orders than as found by the precedhig method, and

they are cusps of the first kind.

To find the multiple point corresponding to x*, we may

reduce y^ = a?* (1 — ar") to y= a^ {1 ^ s^y, and take the

differentials with reference to x' by regarding (1 — ar')" as

being constant. Hence we shall have

dy = 2a; (1 — apf dx ;

and in like manner, d^y = 2 (1 — xy da?
;

or we shaU have {^^= 2= (1 - xj.

Putting a; = in this, we have

"^^=2 and ^=-2-
da? da?

'

consequently, the curve has a multiple point of the second

kind, at the origin of the co-ordinates ; the curvature being

clearly of the second degree.

2. To find the cusps of the curve represented by

y = a? + x^.

The equation is satisfied by putting a; = and y = 0,

or at the origin of the co-ordinates ; and by taking the

differentials, we have ^ = 2a! -f ^ a;*, which, by putting
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SB = 0, gives -^ = 0. It is hence clear that the curve has

a cusp of the second kind at the origin of the co-ordinates,

its two branches touching the axis of x and each other at

the origin.

3. To find the cusps of the curves represented by
y"- — ± Q^.

The equations are satisfied by a; = and y = at the

origin ; and by taking the differentials, we have

2^1= ±^^^

which, by taking the differentials again, regarding dy and dx

as constant, gives 2 l-^j = ± 6*;

dii
which, by putting « = 0, gives -# = ± 0.

It is hence clear that the curves have cusps of the first

kind at the origin, the convexities of the curves touching

each other.

The cusps may be represented by 0< and >0, in which

is the origin, the positive values of x being, reckoned

toward the right ; and the first figure corresponds to the

sign +, while the second corresponds to the sign — , in the

proposed equations.

4. " To find the cusps of the curve expressed by

{y-hy = {x-a)V^

The equation is clearly satisfied hj y = b and x = a, and

by taking the differentials

dy 2a3 — a 2 1

di~^^'-^'^^{x-a)i

and putting a; = a, we have ^ = infinity, or -^ = ; conse-

9*
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quently, setting of£ x — a from the origin, and drawing the

perpendicular y — b to the axis of x through *the point thus

found, by putting a; = a + A we shall have y = b + /r. By
putting positive and negative small values of h in this, we

easily get the cusp of the first kind which is formed at the

upper extremity of i.

5. " To find the cusps of the curve expressed by

i/ = a + x+ {x — hf."

The equation is satisfied by putting x = i and i/ = a + i;

consequently, putting a; = 5 + A, the equation becomes

y — a+i + h + k\

Taking the differential of this, regarding h as being the

independent variable, we have

^-l+^/ri and ^/-_A

— = 1 + 0^ = 1+— = infinity;

By putting h — Oiu the first of these equations, we have

^y _ 1 , n-i _ 1 , Jl

consequently, setting off x=b from the origin, and erecting

the perpendicular y = a + 5 to the axis of x, the proposed

curve will touch y = a + i a,t its upper extremity, and it

clearly results from y = a + b+/i + A* that by putting

y = a + i + k, we shall have k — h + />}
; which clearly

shows that A must be positive, since the denominator of the

index in A* is even, while its numei'ator is odd, so that k will

be imaginary for all negative values of A.

It is hence clear that the proposed cui"ve may be repre-

sented by the figure, such that o being the origin of the

rectangular axes ox and oy of x and y, b is set from o in ihe

direction of x positive, and the ordinate b + a drawn through
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1i

its extremity in the direction of y positive ; then, VW being

drawn through the upper extremity V of 5 + a inclined to

the axis of x at half a right angle, by drawing parallels to

y at the distances h on the axis of x, and setting + A* on the

line above VW and — A* below it, both being set off from

VW ; it is plain, from what is shown at p. 157, since

-^ = -J— is shown, at p. 202, to be of a contrary sign to

the ordinate ± A* both above and below VW, that the

curve passing through the extremities of the ordinates will

give, as in the figure, a curve whose concavity is turned

toward its diameter VW; consequently, V can not be a

cusp, but it.must be what is called a limit, since the curve

touches the ordinate h + a at V, and lies to the right of the

ordinate ; since it is plain that A can not be negative, without

making the ordinate ± h* imaginary.

6. To find the cusps of the curve whose equation is

^ X St

y = - 1 + 3 +
«*

At the origin, or when x — Q, we have a; = and y = — 1,

and, by taking the differentials, we have -p = - -\- —x',

which, at the origin, gives -^ = -^ for the tangent of the

angle which the tangent to the curve at the origin makes
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V
witli tTie axis of x ; and since the index in x- has an even

denominator, x must be positive. Hence it is clear that the

curve has a cusp of the first kind below the origin, which

may be represented by the annexed figure; o being the

origin, and the cusp is at the distance 1, below it

7. "To find the cusps of the curve whose equation is

y — a -\- X -Vlx^ -\- C2^."

At the origin, a?= and y=-a-i also -^ = 1 ; consequently,

since x must be positive, the curve clearly has a cusp of the

second kind above the origin when 5 is positive. Hence the

cusp may be represented by the following figure ; in which

is the origiQ, and the cusp is at the distance a above it. (See

Appendix, p. 602, &c.)
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PLANE AND CURVE SUEFACES.

(1.) Plane Surfaces.—1. A plane surface may be repre-

sented by referring it to three rectangular axes. Thus, let

two equal lines in a plane, called the axes of as and y, cut

each other perpendicularly at the poiat 0, called their 07'igin,

then imagine a right line, called the axis of z, to be drawn

through at right angles to the plane of x and y, or to that

in which they are drawn.

Hence, suppose a plane cuts the axis of z at the distance

c, supposed positive, from the origin 0, and that it cuts the

planes in which the axes of s and x, and those of s and y,

lie in two right lines, called the traces of the plane. Then

from any point in the trace on the plane s and a? draw a per-

pendicular to the plane x, y, and it will cut the axis of x at

the distance x, supposed positive, from O, the origin of the

co-ordinates ; and if a denotes the natural tangent (or the

tangent to radius 1) of the angle which the trace makes with

the axis of x, we shall clearly have ax + c for the length of

the perpendicular to the plane ; a being positive when the

perpendicular is greater than c, and the reverse. And from

the point in the trace, draw a right line parallel to the trace

on the plane s, y, and draw a perpendicular, s, from any

poiat in this line to the plane x, y ; then, y being the dis-

tance of this point from the plane s, x and b the natural

tangent of the angle made by the line with the axis of y,

we shall, as before, have s = c + ax + by for the equation
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of the plane ; in whicli b is positive wlien z is greater than

the preceding perpendicular, and the reverse.

2. It is easy to perceive how we may represent the equa-

tions of a right line perpendicular to the plane. Thus,

imagine planes to be drawn through the perpendicular at

right angles to the traces s ^^ ax + c^ and s = Sy + c;

then, from well-known principles of geometry, the common

sections of these planes, and the planes z, x and z, y, will be

perpendicular to the corresponding traces.

Hence, from what is shown at p. 129, we shall have

z — \- c', and z = —^ + c",
a

or a3 -f a; -f c' = 0, and Iz + y + c"~ 0,

will represent the equations of the perpendiculars to the

traces, or of the perpendicular to the plane.

3. It clearly results from what has been done, that, if we

please, we may represent the equation of a plane by the more

general form. Ax + By + Cs + D = ;

or, if it passes through a point whose co-ordinates are X, Y,

and Z, by A (X - ») -f- B (Y- y) 4- C (Z - 2) = ;

and -^ (Z'- z) - (X'- X) = 0, |-(Z'- z) - (Y'- y) = 0,

will represent the equations of a perpendicular through the

point X', Y', Z', to this plane.

(2.) Curve Surfaces.—1. Let z ^^f (a-, y) represent the

equation of a curve surface referred to the three rectangular

axes of as, y, and s, regarding x and y as being independent

variables ; then, if Aa;'+ By'-l- €3'+ D = is the equation

of a plane referred to the same axes, which touches the curve

surface at the point whose co-ordinates are represented by

£b', y', and s', it is plain, if the partial differential coefficieuts,
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dy'

dz' . dz' ^

dx'
^

dv'
surface are represented byp and §, that

A Bwe must have _^ = — -^, and g = — -^, the values of the

partial differential coefficients -j~, and -^,, given by the tan-
QKC dy

A B
gent plane. Hence, substituting p and g' for — ^ and — p^

in the equation of the plane, reduced to the form

A , B , D

•we shall have s' — px' + qy' ^ for the equation of the

plane which touches the surface at the point (x', y', s').

Hence we have Z — 3=^(X — cb) + q (Y— y) for the

equation of a plane that passes through the point (X ,Y, Z)

without the surface, and touches it at any one of its points

(«, y, z) ; and from the equations of the perpendicular,

-^{Z'-b)+X.'-x = 0, and - |-(Z'-s) +Y'-y=0,

to Z - ^ = -^ (X-^) -|- (Y-y) =iP (X-a;) + ^(Y- 2/),

wehave^(Z'-s)+X'-£B = 0, and q{Z'—z)+Y'-y=0,

for the equations of a perpendicular through the point

(X', Y', Z') to the tangent plane.

If a, J, G denote the angles which the perpendicular,

called the normal, makes with the axes of a?, y, and s, we

shall have

X'-a; , Y'-y ^ Z'-s
cos a = —^ff— , cos b =—=rT^, and cos c = —-^r^—

,

in which N = [(X' - xf + (Y' - yf + (Z' = zf]^ ;

consequently, substituting — p {Z'— z) and — g (Z' — z)
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from the equations of tlie normal, for X' — a? and Y' — y.

we easily get

cos a = -P cos 5

V{f + <t + l)' i/O' + s' + l)'

-d COS . = -r^.-ry
It may be added, if z is not explicitly given in terms of

X and y, but implicitly by such a function as « = = a

function of x, y, and z ; then, by taking the differential co-

efficients, we shall have

du du dz _du du _ a
'^^ j-*^^ — n

dx ds' dx~~ dx dz -^ ~ ' dy dz^ ~ '

. . . .. du du , du du
whichgive ^=--^_, and j=--^-^.

Hence, we must substitute these values of p and q for them,

in the preceding equations. (See Young, p. 163.)

2. There are one or two transformations of co-ordinates

that are often useful in the determination of the forms of

curve surfaces, which we will now proceed to notice.

1st To change the origin, without altering the directions

of the co-ordinates.

Let X, y, and z be the co-ordinates of any point ; then, by

putting a + x\h + y\ and c + z\ for a?, y, and s, the co-ordi-

nates will be changed into the new co-ordinates x', y\ and z\

by moving the origin through the distances (here supposed

positive) a, 5, and c, in directions parallel to the axes of

a;, y, and z.

2d. To transform the co-ordinates of a point when referred

to two rectangular axes, into three co-ordinates referred to

three rectangular axes having the same origin.
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Let Ox' arid Oy'' represent tlie given rectangular axes, and

P a point in their plane having OP' and OP", denoted by x'

arid y', for its co-ordinates. Through the origin O of the co-

ordinates let Ox be drawn, making the angle xOx' = (p with

Ox', and let the plane of Ox and Ox' make the angle with

the plane of the liaes Ox' and Oy'. Then, draw Oi/ in the

plane of 0*' and Ox at right angles to Ox, and Os at right

angles to the plane of Ox and Ox', or Oy. Join OP, then

83, y, z, the co-ordinates of P when referred to the rectangular

axes of Ox, Oy, and Oz, are clearly the projections of the

distance OP on the axes, which are clearly the sums of the

projections of OP" and PP", or OP" and OP', on the same

axes. Because Ox' is perpendicular to the lines Oy' and Oz,

it is clearly perpendicular to their plane, and in like manner

Oy is perpendicular to the plane of the lines Ox and Oz;

consequently, the angle made by these planes with each
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other equals tlie angle yOx' = - — ^, by representing the

right angle a^y by ^, since ^ = the angle a;0,c'. Since

OP' cos (j> = x' cos ^ = the projection of x' on the axis of r,

and that OP" cos (9 — 0) cos = y' sin cos 6 equals that

of y' on £B, we shall have x=ai' cos ^ +y' sin </> cos 9, and

in like manner

y = a;' cos (g — ) + y' cos (tt— <^) cos

= x' sin
<l>
— y' cos ^ cos 0,

and 2 = 2/' sin 6.

Hence, if we substitute these values of as, y, and s, in the

equation of any surface, the resulting equation in x' and y'

will give the equation of its section by the plane of x' and

y', through the origin of the co-ordinate% and thereby give

us a clearer view of the nature of the surface.

Thus, if we take x' + y^ + s^ — r^, the equation of the sur-

face of a sphere, and make the preceding substitutions, we

shall have

x'^ (cos'^ + sin^ 4>) + y"^ cos^ 6 (cos^ ^ + sin^ </>) + y'- sin^

= x"" + 2/" = r^
;

consequently, the section of a sphere by a plane through its

center is a circle whose radilis equals the radius of the sphere.

If x' cos ^ + y' sin <p cos d -\- a, x' sin 4> — y' cos 4> cos + 1,

and y' sin 6 + e, are put for x, y, and z, in the equation of a

surface, we shall have the equation of a section of the sur-

face, when the origin of the co-ordinates is changed, without

altering their directions.

By making these substitutions in the equation of the sur-

face of the sphere, we readily get
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(as'+ a COS <^ + 5 siii^)^+ (y'+ a sin ^ cos9— 5 cos cp cos O+ csin Of

= 7^ — {asin
(f)
smO — h cos

<f>
sin d — g cos 6)-,

for the equation of the section of the surface by the plane

of k' and y', which is clearly the equation of a circle whose

radius is the square root of the right meraber of the equa-

tion.

If a = 0, 5 = 0, and ^ = 0, the equation reduces, to

the cutting plane being at the distance o from the center of

the sphere. If c — t", the section becomes

consequently, we must have x' = and y' = 0, and the

cutting plane becomes a tangent to the surface of the sphere,

and is clearly at right angles to the radius drawn to the

point of contact If o is greater than r, we shall have

x'^ + y'^ = r" — c^, a negative result, which is impossible

;

consequently, the plane of x' and y' does neither cut nor

touch the spheric surface. If e = 0, the equation becomes

gj'2 + y'^ = r\ which is called the equation of a great circle

of the sphere, while that of x'^ + y'^ = j"^ — o^ is called that

of a small circle.

(3.) We will now proceed to show how to represent

cylindrical, conical, and surfaces of revolution, &c., accord-

ing to the methods of Monge.

1. Let x^as + a' and y =:i3 + l' represent the projec-

tions of a right line in space, on the planes of the rectangular

axes of {x, z) and (^z, z), which moves parallel to itself, and

during its motion continually passes through the common

section of two surfaces, represented by the equations

F (.r, 2^, s) = and/' {x, y, s) — ; then, the generated sur-

face is said to be of a cylindrical form, the moving riglit
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line being called its generatrix, wMle tlie intersecting sur-

faces are called its directrix.

Because the generatrix is constantly parallel to itself, it is

manifest that a and b must be constant or invariable, while

a' and h' will vary. But if we eliminate x, y, z from the

four equations, which must be constantly coexistent, we
shall get an equation that may be expressed by the form

J' = (a') = a function of a', or since a' = x — as and

5' = 2/ — fo, we have y — hs = ((> {x — as) for the general

form of equations of cylindrical surfaces.

Differentiating the equation separately, by regarding s as

a function of x, and then by regarding s as a function of y,

we shall have
— Jp = (1 — ap) 0' (x — as)

and 1 — §2' = — aq(j)' (x — as)
;

in which <^' (x — as) is put for —~ -, when <p {x — as)

is regarded as being a function of s. Eliminating <^' {x — as)

from the equations, we get y^^IT ~ ' ^' °^ ^^^ equiva-

lent ap + hq=l, which is called the general differential

equation, or, more properly, that of partial differential co-

efficients, of cylindrical surfaces. The same equation results

immediately from Z — s =j? (X — a?) + § (Y — y), the gen-

eral equation of a tangent plane to cylindrical surfaces. For

the equations

x=:as + a' and y =hs + h',

give X — 33 = a (Z ^— s) and Y — y = 5 (Z — s),

which, being substituted in the tangent plane and the com-

mon factor Z— s rejected, becomes ap + 'bq = l; the same

as before. If, as at p. 208, u = Q is an implicit function of

X, y, and z, we shall have
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du _ du J du _
du

^ ~ dx ' dz ^ ~ dy ' dz

which, substituted in the preceding equation, give

du , du du

dx^ dy dz ~ ''

which IS, apparently, of a more general form than the pre-

ceding equation.

2. To determine the general equation of conical surfaces,

we may proceed in much the same way as before, by taking

X — x' = a (z— z') and y — y' i^h {z — z') for the equa-

tions of the right line which constantly passes through its

vertex (»', y', z') supposed fixed, and by passing during its

motion continually through the directrix F (», y, s) =: and

f {x, y, z) — 0, generates the conical surface.

x', y', and z' being supposed to be known, if we eliminate

X, y, and s from the four preceding equations, we shall, as

before, get -—^ = (p i' jl for the required equation.

Regarding the right member of this equation as being a

function of a, and eliminating the function as in the case of

cylindrical surfaces, we readily get

(y-y')P ^ 3-2'-(x-x')p
^ — s'—(]/-y')q {x— x')q '

or its equivalent z — z'=p(x— x')+q{y — y'), which is

the equation of the partial differential coef&cients of the

general equation of conical surfaces; which is clearly the

general equation of the tangent plane to the conical surface,

as it ought to ba If m = is an implicit fiinction of x, y,

and z, we shall have

du du , du du
V— i

—

'-
-T- and g= =—=

—

j-
,^ dx dz dy dz
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wliicli reduce tlie preceding equation to

, ,. du, , ,.du^, ,, da(—')^ + (2/-y')^ + (—0^ =

Thus, if for M = we take xyz— Zif'x — 20 = 0, we shall get

1 PI 1
„dib du , du

yz — Sy", X3 — Gxy, and xy, lor the values oi -7-, -7-, and -j-
;

or, accenting the letters in these expressions to signify that

they correspond to the line of contact of a conical surface

with the proposed surface, the above equation, by substitu-

tion, becomes

{x-x') (yV-3y'=) + (y-y') {x'z'-Qx'y') + {z-z') x'y'=0;

or, since x'y'z' — %y'^x' = 20, it becomes

x {y'z' — By'-') + y {ic'z' — ex'y') + zx'y' = 60
;

which is called the equation of the conical surface, which

envelops the proposed surface, (aJ, y, s) being the vertex of

the conical surface, or of the enveloping surface. The

equation being of the second degree in x', y', and z', shows

that the line of contact of a conical surface, having its

vertex at the point (x, y, s), with the proposed surface, is in

a surface of the second degree. It is hence easy to perceive,

that if a conical surface envelops a surface of the with

degree, that the line of contact will be in a surface of the

{m — l)th degree. (See " Application de 1'Analyse a la

Geometrie," by Monge, pp. 14 and 15; also, see Young,

pp. 170 and 171.)

3. To find the general form of the equations of surfaces,

of revolution.

Let X = az+ a', and y = fo + b', represent the equations

of the axis of revolution ; then, from what is shown at p. 205,

z + ax + by— is the equation of a plane perpendicular to

the axis.
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Because the perpendicular plane cuts the surface in the

circumference of a circle whose center is in the axis, by

representing the co-ordinates of the center of a sphere, of

which the circle is a section by thd perpendicular plane, by

a', b', and ; we shall have (a; — a'J + {y — h'f -\- z" =: ?'^

for the equation of its surface, in which we may suppose

a' and V to be constant, while x, y, s, and the radius r, are

variable.

If we substitute the values of (x— a'f and (y — h'J from

the equations of the axis, in the preceding equation, it be-

comes (a^ -f S^ + 1) s^ = 7^, in which a and h are constant, or

invariable ; and substituting ax and hij from the equations of

the axis in that of the perpendicular plane, it becomes

(a= +¥ + l)s + aa' + hV = g.

It is hence manifest, from a comparison of these equations,

that we may assume

^3 + ax+hy=^<l> [(» - aj + (y — I'f + s'J

for the general equation of surfaces of revolution.

If a' = and h' = 0, the equation is reduced to

s + ax + iy = (j) (ar + y^ + s'),

which, when a = and J = 0, or when the axis of revolu-

tion coincides with that of s, becomes 2 ^ (a;^ + y^ + s^)^

or, more simply, we shall have s = i/j (a;° + y^).

If we regard the right member of the general equation of

surfaces of revolution as being a function of s, we shall,

from the elimination of the arbitrary function, as heretofore,

, ,, ,
. j) + a x — a'+ps

get the equation 5- — -%-;—^—

,

or its equivalent,

(3/'— b'—iz) p— {x—a'—az) q + a {y-b') — b {x—a') = 0;
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"wTiicli, when s is the .jaxis of revolution, reduces to

yp-xq = 0.

The same equations among the preceding partial differen-

tial coef&cients may readily be obtained from the equations,

£B — ce'+ jp(s — s') = 0, and y — y'+ g' (a— s') = 0,

of the normal to any point (a;', y', z') of the surface of revo-

lution, as is evident from the consideration that the normal

must pass through the axis of revolution, whose equations

must clearly be coexistent with those of the normal.

Hence, eliminating x and y from the equations of the nor-

mal by means of the equations of the axis, they will be

reduced to

az + a' — x' +pz —pz' — {a +p) s + a' — x' —ps' = 0,

and {b + q)z + b' — y' — qz' = 0;

consequently, eliminating z from these equations, we shall

. a + p x' — a' + pz'
have , ,

= —
, / , , I+ q y' — h' + qz'/

which agrees with the equation at p. 215, when we use x, y,

and z for as', y', and z', as at the place which has been cited

;

hence, all the preceding results will be obtained, as above.

To illustrate what has been done, let x= az + a', and

y = hz + h', represent the equations of a right line revolving

around an axis parallel to the axis of z, to find the nature of

the surface of revolution described by it.

From z = i> {a? + y% we clearly get a? -\- y^ = xji'z — &

function of z ; which clearly becomes

(7/ + f = {az + a'f + {hz + by,

from the substitution of the values of x and y from the equa-

tions of the. revolving line.

To determine the nature of the surface more fully, we
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shall find the liature of its section by a plane through its

axis. Thus, substituting the values of x, y, and z, from

p. 210, since = ~ — 90°, we have sin =; 1 and cos 6 = ;

and thence, get x =:x' cos <t>, y=x' sin
<l>,

and z = y'.

Hence, from the substitution of these values in the preceding

equation, since sin^ </> + cos^ ^ = 1, we shall have

x" = {ay' + aj + {h/ + ij

for the equation of the section of the surface by a plane

through the axis of s, which is perpendicular to the plane

of x and y. Developing the right member of the equation,

we have

«'= = (a= + J') y'= + 2 {aa' + hi') y' + a'^ + l'\

or its equivalent,

X -{a +b)\y + ^, ^ J, ;
- ^qrp- + « + <^ .

which, by representing x' and y' H TTT^" ^7 -^ ^^<i Y'

is readily reducible to ^

the equation of an hyperbola, having-Y= ± X -i- ^/(a' + ¥)

for the equation of its asymptotes.

Hence it is clear that the equation above found is that of

an hyperboloid of revolution of one sheet. (See page 20

of Monge's work.)

4. A given curve surface revolves round a given straight

line, to find the surface which touches and envelops the

moving surface in every position.

The required surface must clearly be a surface of revolu-

tion round the given straight line ; consequently, the curve
10



218 EEPRESENTING CTLINDKIC SUEFACES, ETC.

of contact of the sought surfece and the revolving surface

in its first position is evidently a curve whose revolution

round the given straight line will generate the required

surface. It is hence clear that this question is reducible to

that given on page 214, and that^, q, in the revolving curve,

must be the same as in the revolving surface in its first

position, and that they must satisfy the equation of condition

as there found.

Thus, let the revolving surface be that of a spheroid,

having a? + 1^ + n?s' = m^ for the equation of its surface

;

and supposing it to revolve round one of its diameters

having x ^ as and y = h3 for its equations, when referred

to its • principal diameters ; then from the equation of the

sui-face we shall get p = 5- and a = v.

Because a', i', each equal naught in this example, the

equation at page 215 becomes

{y — hs)^ — {x — as) q + ay ~bx = 0;

which the substitution of the preceding values of p and q
reduce to ay — bx — 0. Hence the equations of the gen-

erating curve of the envelope are expressed by

ijff' + y^ + n^z' = m', and ay = ix;

and because the described surface is a surfece of revolution,

we must also have (see p. 215)

ax + by + 2 — C, and af + if + z" =z 7".

From the first and fourth of these equations, we have

, _ m= — r»

and since the second and third give

ay—ha = and oa; -f 5y == c — s,
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we have, by taking the sum of their squares,

(a= + J=) {a? + y'^={p- z)%

which, from or -\- y^ = 7^ — z^^ is reduced to

(a= + 5') (r'-a') = (c-s)".

Hence, from the substitution of the value of 3 in this

equation, we have

(a^ + Vf {nV -mF)= [c|/ (w= - 1) _ y'(m= - ?•=)]=,

for a conditional equation among the four preceding equa-

tions that involve x, y, and z.

Since r''^^x'+y^+ s°, and c=^ax+ h/+z, the preceding

equation is equivalent to

[n= {9? + f -[- s^ — m^] . (a' + J=) =
[(s + ax + by) i/(?i=' -1) — ^{9n?- aP-f — 3=)]?,

which is the equation of the sought or enveloping surface

;

agreeing with Mr. Young's result, at p. 176 of his work.

5. When a surface is such that it can be conceived to be

spread out on a plane without being torn or rumpled, it is

called a developable surface.

It is clear that a developable surface may be expressed by

means of its tangent plane as follows

:

Thus, let Z — 2 = ^ (X — ») + 2' (Y — y) represent the

equation of its tangent plane, which is easily put under the

equivalent form Z = pX. + qY + z — px — qy: in which

3, a;, y, are the co-ordinates of the point of contact of the

plane with the surface ; while Z, X, Y, are the co-ordinates

of any other point of the plane.

Supposing^ and q to be constant, or their total differentials

dz
to equal naught, while x, y, and z are changed, since -^ = j?

dz
and T- = 2', we easily get in differential coefficients, the
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general equation of developable surfaces. Thus, representing

d£ _<^ dq _<p2 , dp _dq d^z _ cfg

'dbi~M'Ty~ dif dy~ dx' dxdy dydx'

severally, by r, t, and s, by putting the differentials of p
and q equal to naught, we have

fdx + ^dy=0 and ^ dx + ^ dy = 0,
dx dy ^ dx dy " '

or rdx + sdy = and sdx + tdy = 0,

1 1 • dy r , dy s
which give ^=-J and ^=-J'

Equating these values of -# , we have

- = -, or z-^— s°=0,at
which is equivalent to

^ ^ _ (
^^ y_ A

cZas' c?y'' \dxdy/ ~ '

for the equation of partial differential coefficients of the sec-

ond order of developable surfaces.

EesTiming, rdx + sdy = and sdx + tdy = 0, and multi-

plying the first by dx and the second by dy, by adding the

products we have

rdn^ + 2sdxdy + tdy^= 0,

which is called by Monge (at p. 82 of his work), the c/iarao-

teristic of developable surfaces.

Because dz ^pdx + qdy, we shall clearly have

^z = rda? + 2sdxdy + idy%

consequently, since the right member of the equation equals

naught, we shall have cPz= in case of a plane ; that is,

<^z — is the characteristic of developable surfaces.
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Since c^0 = belongs to a plane, and that tlie contact of

the tangent plane with the surface is clearly a line, it is evi-

dent that all the points of the line may be regarded (see

Monge, p. 82) as constituting a plane line.

Because rt = e^, we shall have s = Vri, which, being put

for s in the characteristic, reduces it to

rdaP -f 2dxdy Vrt + td]/ = {dx\/r + dy\/tf = 0,

whose square root gives

dx^T^dy^t^^ or ^^-/p or %= -
^/\\

these, when the surface is developable, are

dy _ r J '^y _ *

dx s dx t

as before shown.

dv T s
Because -^ = ^— ,or — -= the tangent of the angle

which the projection of the line of contact on the plane x, y,

makes with the axis of x, it is clear, from what has been

done, that the line of contact must be a right line ; which

may be regarded as being the generatrix of the developable

surface.

Hence the developable surface (by Monge called the

envelope of the infinitesimal tangent plane) may be consid--

ered as composed of plane elements of unlimited lengths and

of infinitesimal breadths, which successively out each other in

right lines. Hence the first of these elementary planes may
be turned about its line of common section with the second,

until its plane is brought into the same plane with it ; and in

like manner the plane thus formed, may be turned about the

line of common section of the second and third elements,



222 DEVELOPABLE StIRPACES.

until it is brouglit into the plane of the third element ; and

so on to any extent that may be required. It is heUce

evident that a developable sui-face may be spread out on a

plane without being torn or rumpled.

Because (see pp. 212 and 218) the equations of cylindi-ical

and conical surfaces are represented by

op + bq=l, and s' =j>x' + qy' + 3 —jpx— qy,

it clearly follows, from what has been done, that they are

developable surfaces ; since they evidently come under the

form z —pK + qY + z —px — qy, in which the differentials

of p and q are put equal to naught, X, Y, Z are constant,

while «, y, z are variable.

Remarks.—If we assume s = a;<^ (a) + yi/i (a) + a to rep-

resent the equation of a plane, in which (^ (a) and V* (a) repre^

sent any arbitrary functions of a; then, by putting the first

and second differential coefficients taken with reference to a

equal to naught, we shall have the forms (see Monge, p. 85)

x<j>' {a) + 2/1/.' {a) + \ — and x(p" (a) + yi/j" (a) = 0.

Young (at p. 208 of his " Differential Calculus") says, that

for a, in the equation of the plane, the function f{a) ought

to be used, since Monge's form excludes those forms com-

prehended in the form z = X(p (a) + yrp{a) + c; but this

objection is clearly invalid, since, if we please, we may for s

put z — c, and omit a to suit the case, and we have Mr.

Young's form.

It is evident that the equation in x, y, and z, resulting

from the elimination of a from

z = xf (x) + yV if') + « and X(f>' (a) + yip' (a) + 1 — 0,

represents a developable surface. For the first equation in

virtue of the second, gives
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^=:^ = ^(a), and ^ = j = i/,(a);

consequently, since p and
q^ are functions of a, we stall evi-

dently have p =^0{^ = a function of q. Hence, we shall

consequently, eliminating 6'
(q) from these equations, we get

rt — ^ = 0, the equation of developable surfaces, and, of

course, the assumed equations jointly represent a developable

surface.

Regarding a as being an arbitrary constant, that ought to

be retained in the equations, it is clear that the equations

may both be regarded as being functions of the characteristic,

since the position of the characteristic clearly depends on *.

Hence, the first equation being that of a plane, and the

second that of a right line on the plane a;, y, it is manifest

that the characteristic must be a right line, which is the same

as the generatrix of the surface. (See Monge, p. 85.)

If we eliminate a from the equations

z — x<^ (a) + y^f> (a) + a,

»^'(«) + yV''(a) + l = 0,

and x^" {a) + y^" {a) = 0,

we shall clearly get two equations in terms of x, y, and s,

which will clearly be the equations of the line in which the

intersections of the successive characteristics must lie, which

must evidently be on the developable surface ; this line being

called by Monge, the edge of regression of, the envelope, or

developable surface. (See Monge, p. 85, and Young, p. 212.)
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"We will illustrate what has been done by one or two

simple examples.

1st Let z = aja' + ya + J represent the variable plane, to

find the developable surface and its edge of regression.

Here, by taking ihe differential coefficients relatiyely

to a, we have the remaining two equations expressed by

2xa + y = 0, and 2aj = 0. Hence, eliminating a from the

first of these and the proposed equation, we get

4aj (s - J) + 2/« = 0,

for the equation of the envelope ; which will be found to be

a developable surfaca If we eliminate a from the three

equations, since 1x = 0, we shall get s = 5, a point in the

axis of 2, for the edge of regression,

2d. Let the variable plane be s = xa? + ya^ + a ; then, the

other equations are 3a;a^ + 2ya + 1 = 0, and ^xa + y = 0.

Solving the second of these equations by quadratics, we

get a = — ^ ± „ ; which, substituted for a in° Zx sx

the proposed equation, will give the envelope or developable

surface."

Also, eliminating a from the three equations, since the

V 1
third gives a = — ^^, we have Zx = y^ and y3= — -, the

first being that of a parabola on the plane x, y, and the

second that of an hyperbola on the plane y, z, for the equa-

tions of the edge of regression.

6. By a twisted surface we mean one described by a right

line which is continually changing the plane of its motion.

To represent such a surface, we shall suppose x = az + a'

and y ^^hz + h' to be the equations of the generatrix, which

we shall suppose to be continually moving along three given
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curves of double curvature (or which do not lie wholly ia

the same plane) as directrices ; then, each of these curves

will be expressed by two equations, when projected on the

rectangular planes of x, z, and y, s.

Hence, if we eliminate x, y, and s, from the equations of

the generatrix by the equations of any one of the directrices,

we shall have an equation involving a, h, a', and I', as un-

known quantities ; consequently, if we eliminate x, y, and s,

in like manner, from the equations of the generatrix by the

equations of the remaining directrices, we shall have two

more equations, each involving a, b, a', and &', as unknown

quantities. Hence, from the solution of the three equations

thus found, any one of the quantities a, b, a', and b', as a,

may be supposed to be taken for the independent variable,

and each of the others to be a function of it. Thus, for

a', b, and &', we may put i/- (a),
<t>

(a), and (a) ; which reduce

the equations of the generatrix to the forms

X = as + V'(«), and y = s(f>{a) + 0{a),

in which ip, (p, and 6, that precede a, are used to denote any

arbitrary functions of it ; so that if t/) (a) is assumed to equal

naught, <p (a) = a\ and 6 (a) = a', our equations will become

X = as and y = a's + a", which, by eliminating a from the

second by the first, give ys^ — £»V+ xf', for the equation of

a twisted surface.

Generally, if a is found from one of the equations,

x = as + 4>{a) and y = s<t>{a) + 6 (a), and its value substi-

tuted in the other, s will become a function of x and y, or

we shall have the equation of a surface, since s is a function

of X and y; consequently, as heretofore, we shall have

(is = pdx + qdy, in which x and y are the independent

variables.

10*
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By taking the differentials of x = as + \p (a) and

y = s-h{a) + e(a), supposing ct to be constant, we shall

have dx = ads and dy:=tj) (a) ds ; which show that, in taking

the differential of ds =pdx-\-qdy, when a is regarded as con-

stant, on the supposition of the constancy of dx and dy, or

that X and y are the independent variables, we must regard

ds as also being constant; consequently, we shall have, in

this way, dpdx-\-d(idy '=
0, in which dp and dtj stand for the

total differentials of^ and q.

Since (see p. 220)

dp = -^ dx +
-J-

dy = rdx + sdy

and dq = -^dx + -—dy = sdx + tdy,

we shall have the equation

dpdx + dqdy = rdaP + 2sdxdy + tdy^ = 0.

Because dx and dy are constant, by taking the total dif-

ferentials of this equation, we shall have

d^pdx + d-qdy = drdaP + 2dsdxdy + dtdy^ = 0.

If we ^ ut
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tlie preceding equation is reducible to

d^jpdj? + (Pqdy^ = drdxr + 2dsdxdt/ + dtdy'

= udz^ + Zvda?dy + Bwdxdy^ + u'd^f = 0,

or, we shall have

an equation of the third order of partial differential co-

efficients of twisted surfaces.

From dx = adz and dy =
<l>

(a) ads, by division, we get

-— = —^ , which must clearly be the same as found from
dx

+ 2^l + ^ = «'

or Its equivalent ^^) + - ^ = _

whose solution gives

dy _ — s ± Vi^ "^ ^^)

dx
^

t

r

t'

= a

consequently, we shall have —^ = a', or ^ (a) = aa', and

the remaining eqaation becomes, by substitution (see Monge,

p. 198),

w'a" + 3wa'^ + 3va' + « = 0.

If the three directrices are so given as to enable us to find

the forms of ip (a), V (a)) and S (a), then by finding the value

of a in one of the equations

x = az + tl>(a) and y= s(l> («)-+ 9 («),

and substituting it for a, in the other, as at p. 225, we shall

have an equation in x, y, and s, for the equation of the

twisted surface, and what is called the integral of the equa-
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tion of partial differential coefficients of the third degree,

given on p. 227 ; if, however, a can not be eliminated from

the equations, the equations, in their undetermined form,

must be taken for the integrals.

Remarks.—^It is manifest that whatever may be the

natures of the directing lines, we may proceed in much the

same way, as has been done, to find the equation of the

twisted sur&ce described by the motion of the generatrix.



SECTION IX.

CUEVATUBE OP SURFACES, AND CURVES OF DOUBLE

CURVATURE.

(1.) Curvature of Surfaces.—^Let

z' — s =p {x' — x) + q{y' — y)

represent the equation of a tangent plane at a point of a

curve surface whose co-ordinates are x, y, and z ; then, from

what is shown at p. 207,

a!-X+^(s — Z)=:0 and y -Y + q{z — Z) = Q,

are the equations of the normal to the curve surface, at the

same point. By taking the differential of the tangent plane,

supposing X, y, s, alone to vary, we have dz =j>d(e -p qdy

;

and from

or (see pp. 220 and 226),

dp_= rdx + sdy and dq = sdx + tdy.

Taking the differentials of the normals, supposing X, Y, Z,

not to vary, we have

das + pdz + {z — Z) dp =

dx + p^dx +^qdy + (s — Z) {rdx + sdy) = 0,

and dy +pqdas + q^dy + (s — Z) (sdx + tdy) = ;

which are equivalent to
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l+y+(3-Z)-;-+[M + (^-Z)*]^ = 0,

and _p2 + (3-Z)s+[l+2= + (3-Z)<]g=0.

Eliminating -j- from these, we tave

[1 +y + (3 - Z) 7-] [1 + ?=+ (3 - Z) ^]

= |>2 + (s - Z) «] [_p£ + (3 - Z) s\

or (s - Z)= {rt — /) + (3 - Z) x

[(1 + f)r-2p<i8 + (1 ^f) il] +y + g'' + 1 = 0;

and the elimination of s — Z from the same equation, gives

©[(i + ^).-^.'] + |
[(1 ^f)r- (1 +y) <] - (^= + 1) s +pqr = 0.

These formulas may be much simplified by supposing the

tangent plane at the point {x, y, s) to be parallel or coinci-

dent with the plane x, y, imagined, to assist the imagination,

to be horizontal, the concavity (or hollow) of the surface

being turned upward, and the axis of z vertical, its positive

value being reckoned upward ; then, p — — and q =— will
ct3G ^y

evidently be reduced to naught, and the formulas will be

reducible to

and m^'-^^^-l^^.
\dxl s ax

Solving these equations by quadratics, we shall have
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which, on accoiint of the ambiguous signs, clearly show that

s — Z and -j- , each admit of two values.

Because ^^ -(>- + n^- Q-Jii'
aa; 2.s

and
^' = -(^-0-^(^-^j' + 4^

^

(^a; 2s

evidently represent the natural tangents of the angles which

two vertical sections of the surface, by planes through the

axis of 3, make with the plane of the axes of x and z\

by taking the product we shall have ~- x -^ = — 1, conse-

dti
quently, if A stands for the angle whose tangent is -j-,

dy'A 4- 90° must stand for the angle whose tangent is -^

,

A . / « ,^/^D^ siu A COS A .

smce tan A x tan (A + 90 )
= r- x -.—r- = — 1,^ ' cos A — sm A

and, of course, the two planes passing through the axis of z

cut each other perpendicularly.

If we represent s— Z by E, we shall have for the

equation z-Z = YW^) '

the transformed equation

r + tTV{r-tf +^
^

which clearly represent the radii of curvature of the pre-

ceding perpendicular sections at their point of contact with
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the plane of the axes of x and y. Eepresenting these radii

separately by E and E', and taking the sum of their re-

ciprocals, we have

E^E'
^

- ^ 2 {rt-s^
_^

'"'
r + t-V{r-tf + 4:S^

2 (rt - s')

r + t+ V{r — tf + 45^

_ dp <Ps ^ ^ da (Ps
Becaiise r = -f- = -^-^ and t= -r^ = -^-5,

ax aar ay ay'

and that -j^ and -^ are clearly the radii of curvature of

the vertical sections of the surface which pass through the

axes of X and y, it clearly follows that r + t expresses the

sum of the reciprocals of these radii Consequently, since

the position of the axes of x and y in the plane of x, y, is

arbitrary, it clearly follows that the sum of the reciprocals

of the radii of curvature of any two vertical planes through

the axis of z, which cut each other perpendicularly, is always

equal to = + ^7 ; and of course the sum of the reciprocals

of the radii of any two such sections, is always equal to the

sum of the reciprocals of the radii of any other two.

IfJ according to custom, we represent the curvature of the

circumference of a circle by the reciprocal of its radius, we
shall have the sum of the curvatures in amy two vertical

sections tliatpass through the axis of z, and cut each other

perpendicularly^ equal to the sum of the curvatures in any

other two vertical sections that pass through the axis of z,

and cut each other perpendicularly. It is hence clear, that

if the curvature in one of two perpendicular planes is a

maximum, that it must be a minimum in the other plane,
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and vice versa. It is also clear that K and R'—called the

principal radii—are such, that the first is less than any-

other radius of curvature, while the other is greater than any

other radius.

If we take the principal sections for the axes of co-ordi-

nates, then

^ _ —{r — t)+ V{r—tY + 4c^ __ Is

dx~ 2s ~
r — t+ V{r—tY+4:^

and

.2

dy^_ —{r — t)—V{f — if + 4:^ 2s

dx
~

2s ~y_^_ \f{r— tf + '^s

given at p. 230,- may be taken for the tangents of the angles-

which a pair of perpendicular planes through the axis of z

makes with the first of the principal planes through the axis

of X.

If the perpendicular planes are brought to coincidence

with the axes of co-ordinates, we shall have -~ =0; and of

course, from the first of the preceding formulas, we must

have s = 0. Plence, putting « = in

_ r-\-t-V{r-tf+4:s' , ^, r+ t+ V{r-tf+4:,^
^ - 2{rt-s^)

^""^ ^ ^
2{rt~s^) '

they will become E = - and E' = -- for the radii of cur-' r t

vature of the principal perpendicular sections.

Supposing R" to stand for the radius of a perpendicular

section through the axis of z, which makes an angle whose

dy
tangent = -# with the axis of x, then we shall clearly have

ni, _ dx^ + dy^ _ dse^ + dy'^

~~
d?s ~ rdd? + tdy'^

'
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\2

since « = 0, or E" =

\dx)
r+t

wMch, by supposing -j- = tan ^, becomes

^„_ 1 + tan= <. _ 1

r + t tan^ (jt r cos- ^+ t sin- </>

wbicli, by putting for r and t their values -^ and ^, , is

easily reduced to

T>// ^^:
E' cos^ </) + E sin^ '

, . , . 1 cos° <b sin''
<t>

which gives ^ = -^- + -^7- ;

which clearly show that if E = E', we shall have E" = E,

so that the radii of all the sections through the a;xis s equal

each other.

If E is positive, and E' negative, the preceding value of

E" will be reduced to

- E'E E'E
E"

and

E' cos^ </) + E sin^ <p
~ E' cos''' — E sin= ^

1 _ cos' <l)
sin' <p

noticing, that what is here done corresponds to a circular

wheel with a groove in its circumference, E' representing the

radius of the wheel whose convexity is turned upward, and

E the radius of the groove whose convexity is turned

downward, and its concavity- upward.
/E'

If E sin' ^ = E' cos' <^ or tan (^ = ± 4/=d~ >

we shall have E" = —rr- = infinity

;
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consequently, tan = 4/=- and tan (p = — y,^
' a ^ Hi

indicate two right lines on the surface drawn to make angles

with the axis of aj, or width of the groove, passing through

its center and making angles with it, whose tangents are

/R' /R'
y tj- and — y :g- on the positive and negative sides of x

positive, and on the positive and negative sides of x negative;

the surface between these tangents being clearly concave,

while the remaining part of it is evidently convex, so that

the tangents separate the concavity and convexity of the

surface from each other.

Supposing the right line x' is drawn from the origin of

the co-ordinates in the plane of x, y, to the surface, so as to

make the angle with the axis of x (see Young, p. 183)

;

,, , . /cos' (p ,
sin' </)\ „

then, by assummg ^^y-^^- ± -^^) «
.

since cob' (px'^ = a^ and siir' <px'^ — y^,

we shall have ^ =^
Ir ^^

'

which is the equation of the surface of a paraboloid of the

second order.

T-, /cos'<i) , sin'</)\ „

, x'^ 2RR' „^„we have — = :^,—2 . , -p t:i = 2R",
s K cos' ± R sm' <p

and R" is the radius of curvature of a vertical section of the

paraboloid, at the point whose co-ordinates are x and y, as it

clearly ought to be.

Hence we perceive how to measure the curvatures at any

proposed point of a surface by those of the paraboloid, and
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that whetlier the principal curvatures have the same or con-

trary directions.

(M + dy

and representing Vda? + dy^ by ds, it will become R" =

Remarks.—1. Resuming R" =—-r^

—

—, from page 233,

which is the radius of curvature in a normal section to the

curve surface at its point of contact with the plane of the

axes X and y. Suppose now a plane making the angle

with the normal section, also touches ds at the origin of the

ds^ .

co-ordinates ; then, it is clear that -^, will be the radius of

curvature in the oblique section with the curve surface, in

which d^z' corresponds to d-z taken in the normal plane.

Because d!^z' and d^z are clearly the hypotenuse and side of a

right triangle having 6 for their included angle, we shall

ipz
have d^z' cos 6 =. d^z or cPz'

cose'

which reduces -^ to -^ x cos = R" x cos
;

consequently, the radius of curvature in the oblique section

equals the (orthographic) projection of R" on the plane of

the oblique section, which is called the Theorem of

Meusnier.

2. Resuming the equations of the normal from p. 229, and

putting, with Monge,

g^rt—^, h={l+q^)r-1p^s+{l+p^)t, and ¥=p''+g^-\-\

in the fourth equation at p. 230, we shall have

a3-X+i>(3-Z) = 0, y-Y + q{z-Z) = 0,
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and (3_Z)= + -(a-Z) + - =0,
9 g

jvliose solution gives z — 7i =

Supposing E to be the radius of a sphere that touches the

curve surface at the point {x, y, s), having X, Y, Z, for the

co-ordinates of its center, we shall have

{x~Xf + (7/-Yf + i3-Z) = W
for the equation of the spheric surface, which, by substitu-

*tion from the equation of the normal, becomes

consequently, from the substitution of the preceding value

of s — Z in this, we readily get

for the two radii of curvature at any proposed point of the

curve surface.

To illustrate what has been done, we will apply it to find

the radii of curvature of the surface, whose equation is

^ ^ dz y ^ dz X
Here we have ^=i>=^ and ^ = <?=X'

which give AT = -j2
;

and from -5-5 = -r- = r = 0,
oar ax

since^ is not a function of x, and, in the same way,

do . ^ , .
dp dq 1
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wliicli give A = — %pqs = — -^

,

and they also reduce g^rt— s^ \a — s^ =. —-—.

Hence the equation {z— Z) z -\— (s — Z) -\— =0,
if if

is easily reduced to

{z-Zf + ^{B-Z) = x^ + f + A',

whose solution gives

„ - xy± i/[A* + A^ {a^ + y°) + ai^y']
3 _ Z =

J-
,

xy ± V[A'+ A'(x^ + f) + aPf]
or Z( — z = J

- [A° + A jx" + ?/)]

~xi/± VLA" + A^ (aJ^ + 2/^=) + ajy]
'

which gives

(A' + a!» + y^)'
E^ =

or R =

{xi/ ± i/\_A'+ A'{a?+ f) + a^yjp

(A' + a? + y'f
xy ± 4/[A* + A\a? + f) + xY]

'

for the expression of the radii of curvature, at any proposed

point of the given surface.

If in the preceding value of R we put a;= and y — O,

we get R = ± A or R;= A and R = — A for the radii of

curvature at the origin of the co-ordinates, which is clearly

that of the vertex of the given surface ; since these radii

have contrary signs, it is manifest that the principal curva-

tures of the surface at its vertex, are turned in opposite

directions, and it is manifest that like conclusions are ap-

plicable to any other point of the proposed surface, but their

magnitudes are not equal, as at the vertex.
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It is easy to perceive, that by making analogous substitu-

tions to those made in the equations for the radii vectores in

the quadratic equation in -^ given at p. 230, we may, after

the manner -of Monge, at pp. 121, &c., of his "Application

de I'Analyse a la Geometrie," proceed to find the integral

of the equation, and thence to trace out the lines of curva-

ture on any proposed surface, together with the correspond-

ing radii of curvature. We shall not, however, attempt to

do this, but shall satisfy ourselves with the following obser-,

vations.

Thus, from what is shown at p. 230, it results that there

are, at any point of a curve surface, tw© lines of curvature

at right angles to each other, such, that the successive nor-

mals to the surface in each intersect each other and form a

developable surface ; the line in which the successive normals

intersect being called the edge of regression of the develop-

able surface, while the lines in which the developable sur-

faces cut the proposed surface are called lines of curvature.

(2.) Curves of Double Ctn-vature.—In treating of curves

of double curvature, it will be suificient to regard them as

consisting of indefinitely small arcs, regarded as straight

lines ; such that (in general) no more than two successive

arcs can lie in the same plane.

Suppose then a; — jb' + A (y — y') -f B (s— s') = 0, to

represent the plane of any two successive sides of the curve,

having x, y, z, for the rectangular co-ordinates of the first

extremity of the first of- the two successive sides, and «', y',

z', for the co-ordinates of any other point of the plane ; then

dx, dy, and dz, being the differentials of x, y, and s, we shall

have dx + Ady + 'Bdz = 0, when we pass from the co-ordi-

nates of the first extremity of the first (short) side to those
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of its second extremity, or those of tte first extremity of

the second side ; and in passing from the first to the second

extremity of the second (short) side, we in like manner get

cPx + A.d?y + BdJ'z = 0.

From the last two of these equations we get

. _ ds(Px — dxcPz , T. _ dxdry — dydJ'x
_

"~
dycPs — dzcPy

' ""
dyd^s — dzd?y

'

and from the substitution of these values of A and B for

them in the equation of the plane, it is readily reduced to

the form

{x— x') (dyd'2— dztPy) + (y—y') {dzcPx— dxd?z) +
(s— z') (dxd^y— dyd?x) = 0,

which is sometimes called the osculating plane of the point

Supposing E to be the radius of a circle passing through

the extremities of the same two successive short sides, and

that the point (»', y', z') is taken at the center, we shall,

from the nature of the circle, have the equation

^'= {x- xj + Cy- yj + (^- s'f

for the first extremity of the first short side; which, in

passing to the second extremity of the first side, gives

{x— x')dx + {y — y') dy + {z— z') dz = 0,

and this, when we pass to the second extremity of the

second side, gives

{x— x') cPa! + (y— y') d^y+ {z — z') dh + da? + dy'' + dz\

If ds represents the length of the first side, since dx, dy, dz,

are clearly the projections of ds on the axes of x, y, and z, it

is easy to show that we must have

dv' + dy^ + dz'' = d^;
'
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consequently, the last of the preceding equations becomes

{x - x') d?x + {y ~y') d?yJr{z— z') d?s + ds'^0.

By successively eliminating z-^s', y— y', and x — x', from

the preceding equation, by means of the equation

(x — x') dx + (j/ — y') dy +{z — z') dz = 0,

we have the equations

(x - £»') (dxd'z - dzd^x) + (y — y') {dyd'^z— dzd!'y) = dzds\

{x — x') (dxd?y— dyd^x) + (s - s') {dzd^y — dyd^z) = dyds\

and

(y — y') {dyd^oo — dxd^y) + {z — z') {dzd^x — dx^z) = dxds\

Hence, supposing x', 3/, s', in the osculating plane, to corre-

spond to the center of the circle, by adding its square to the

squares of the three preceding equations, because the double

products destroy each other, we shall have, since

{x-xJ + {y-y'Y + {z-zJ=-B?

and dz'ds* + dyHs^ + di^ds^ = ds\

{dxcPy — dyd'xf + {dxd'z — dzd^xf + {dycPz— dzd^yf
'

for what is sometimes called the square of the radius of the

absolute curvature, corresponding to the point {x, y, z).

From the development of the squares in the denominator,

and omitting the fector da? + dy"^ + d^ = ds\ that is common
to the numerator and denominator of the resulting fraction,

we have E^
dPa^ + dy + d'^— d^s''

If ds equals its successive side, ds is constant, and c^s = ;

consequently, we shall have

(Px" + dY + d?z^'

11
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wliicli can readily be deduced from tlie simplest principles

of geometry, and that, whether the proposed curve is of

single or double curvature.

« i

Thus, lei ab=:lc = ds represent two successive sides of

the polygonal curve, having the circular arc whose center is

0, passing through their extremities ; then, oci = y5 = oo = E
will clearly be the radius of curvature of the proposed

curve corresponding to the point a, which we shall suppose

to have x, y, and s, for its rectangular co-ordinates. It is clear

that the equal straight lines ab and bo subtend the equal

arcs ab and be, which, when ab and be are indefinitely small,

will differ insensibly from them. If ab is produced to d, so

as to make bd = ab, then, drawing the right line cd, it will

evidently be parallel to ob.

It is also manifest that the triangles cbl and obc or oba are

equiangular, and give the proportion

dc : cb :: cb : bo; which gives E = —7 = —r

•

Also, dx, dy, and ds, the differentials of x, y, and z, the co-

ordinates of the point a, are evidently equal to the projec-

tions of ab or ds on the axes of x, y, and s, which are clearly

equal to the projections of bd on the same axes ; and, in like

manner, the differentials of the co-ordinates of the point b
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equal the projections of 5c, or the (algebraic) sum of the

projections of id and do, on the axes of x, y, and 2.

Hence (see p. 2), since the differentials of the co-ordinates

of the point i diminished by those of the point a, equal

the second differentials of the point a, we get d^x, d^y, and

d% equal to the sum of the projections of bd and do dimin-

ished by those of a5, on the axes of », y, and z; conse-

quently, since the projections of id are destroyed by those

of a5, it clearly results that d^x, d?y^ and d^z, are the projec-

tions of cd on the axes of aj, y, and s.

Hence, from the nature of the projection, it being the

orthographic (or orthogonal) projection, we shall have

which reduces E^ = ^ to E==^-^Vqr^,.

which agrees with what is shown at p. 241.

Thus far a?, y, and s, have been regarded as being inde-

pendent of each other ; we now propose to consider y and z

as being functions of », expressed by y = V^ and s = ^ (»),

the projections of the curve of double curvature on the

planes of a?, y, and a;, s, and shall assume

^ = {x- xj + (i/-yj + {B-z'f

for the radius of a spherical surface, called the radius of

spherical curvature, supposed to pass through any four suc-

cessive angles of the polygonal line.

If », y, z, represent the (rectangular) co-ordinates of the

first of the successive angles, by passing to the second angle

we get the differential equation

{x -x')dx + (iy — y') dy + (z~ z') dz = 0,
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wHcli is clearly the equation of a plane at right angles to the

first indefinitely short side that connects the first two of the

successive angles, and passes through the center of the

spherical surface ; or, putting

dy _ dip {x) , dz _d4> (x)

dx dx dx dx '

equal to P and Q, the equation will be more simply expressed

by x-x' + {y-y')-p + {z-s')Q, = 0.

Eepresenting -j- and -j- by P' and Q', and taking the dif-

ferential of this equation, we have

(y- 2/') P' + (s- 2') Q' + P' + Q= + 1 = 0,

dP' dO!
and from this, by putting -r- and —=— equal to P" and Q",

we in like manner get

(y - y') P" +{z- z') Q" + 3 (PP' + QQ') = 0.

The first two of these equations, since they represent

planes perpendicular to the first and second short sides, and

that they intersect in a right line, clearly show the character-

istics to be placed on a developable surface, or to have a de-

velopable surface for their envelope. And it is evident that

the three equations together represent the edge of regres-

sion, or the line in which the successive straight lines (that

characterize the developable surface) intersect, which is evi-

dently the line in which the centers of spherical curvature lie.

It may be noticed that if the origin of the co-ordinates is

taken at a point in the curve having the axis of x for a tan-

gent at the origin, the preceding formulas will be much
simplified. For, at the origin we shall have x, y, s, each equal

to naught, and P and Q are also reduced to naught, or be-

come infinitesimals. Hence, we shall have
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x' = 0, y'P' + s'Q' = 1, and y'Y' + s'Q" = ;

consequently, we stall have

O" P"
n.1 — J* and -' —

P'Q" - P"Q' ~ P"Q' - P'Q" '

and thence R^ = y'^ + s'^ reduces to E^ =
(v(V' p"P'^3

"

Again, if in the first two of the formulas we put V* («) and

(aj) for 2/ and s, and elimiaate a; from the results, we shall

obtain an equation in a?', y', and z' , for the equation of the

developable surface noticed above.

If s — z' is eliminated from the same three equations, and

V" («) is put for y in the two resulting equations, then the

elimination of x from these equations gives an equation in

terms of y' and x' for the equation of the projection of the

edge of regression on the plane of the axes of x and y.

Similarly, by first eliminating y — y' from the equations,

putting (^ ix) for z in the results, and eliminating », we shall

get an equation in x' and z' for the equation of the projec-

tion of the edge of regression on the plane of the axes of

Oi and s.

If fi-om any point in the common section of the first

two perpendicular planes a straight line is drawn in the

second plane to the second short side of the curve of

double curvature, and produced in the opposite direction

to meet the line of common section of the second and

third planes, and a line drawn from the point thus found

to -the third short side of the curve, and produced in the

opposite direction to me6t, as before, the line of common
section of the third and fourth planes, and so on ; then, a

straight line drawn from the first (assumed) point to the first

short side, and continued as a curve in the opposite direction
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througli the points found, will clearly represent the evolute

of the proposed curve, regarded as its involute. (See Sec.

VI. p. 170.) It is hence easy to perceive that the proposed

curve of double curvature has an unlimited number of evo-

lutea

di/ y — y^
It is manifest that -j-7 = ^ represents a tangent of an

evolute of the proposed curve, when projected on the plane

of X, y, and that by eliminating z — z' from the equations

CB- «' + (y-y') P + (s - s') Q=
and (y-y')P' + (3-3')Q + I" + Q' + l = 0.

and putting i/> (a?) for y in the resulting equation, and in

dV_ _ y — y
'

dx' X — x'

'

then, eliminating x from these equations, we shall obtain a

differential equation in x' and y', whose integral, according

to the principles of the Integral Calculus, will involve one

arbitrary constant. The constant will enable us to make the

evolute pass through any proposed point ; for if the co-

ordinates of any point x', y\ and z' , are represented by a, 5,

&c., by putting a and J for x' and y' in the integral, we

easily get the value of the constant, and thence the integral

is determined, so that the projection of the evolute on the

plane a;, y, passes through that of the proposed point ; and in

a similar way the projection of the same evolute on the

plane a?, s, may be determuied, and the evolute will be found

as required. ,

For an example we will put

y^x and z=^a? for y^tl){x) and s= (as),

whichgive |=P = 1, |=Q = 2., f = = P'.^^
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g = 2 = Q', P" = 0, and Q" = 0.

Hence the formulas given at p. 244 become

«— as' + y — y' + 2a3 (s — «') = 0,

s — s' + 2ar' + 1 = 0,

and Q = 2a!= 0,

of whicli tlie first two give the developable surface, and all

three give the edge of regression. If the values of y and

z are put for them, in the first two of these equations, they

will become

1x — x' — y'-\-%d^ — 2a?s' = and 1 — s' + 3*^ ==
;

consequently, putting as = in these equations, we have

a?' + y' =
. and s' = 1 for the equations of the edge of

regression.

Eliminating x from the first two of the preceding equa-

tions, we shall have j—^— ) = I

—

T^'] ^°^ *^^ equation

of the developable surface, which clearly shows that z' must

be positive, and not less than 1.

If in ^^, = y-ZJ!^ or dy'{x-x') = dx'{y-y%

we put X for y, we shall have

dy' (x — a?') = dx! {x — y'),

for the equation of the projection of a tangent to an evolute

on the plane x, y. And eliminating z' from the equations

2a! — a!'-y' + 2aj»-2ais' = and l — z' + 3x^ = 0,

(x' + y'\*
we get a? = - (—^—j ;

consequently, putting this for .a; in the preceding differential

equation, it becomes
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dy' -+(^)l=^'k-r-^)i
for the differential equation of the projection of an evolute

on the plane x, y.

Hence we must find the integral of this equation and

determine its constant, so as to suit the nature of the case.

It may be added to what has been done, that if a curve of

double curvature has single curvature at one or more of its

points, it is said to have lost one of its curvatures, and to

have a single inflection at such points ; while, if it loses both

of its curvatures (or becomes rectilineal) at one or more of

its points, it is said to have a double inflection at such points.

It is manifest from the definition, that the points of single

inflection in curves of double curvature, may be found by

putting the expression for the radius of spherical curvature

, equal to oo , or by putting its reciprocal equal to 0.

Thus, by putting ,^ „ _ -pn^y the expression for R^

given at p. 245, equal to infinity, or putting its reciprocal

equal to naught, we have P'Q" — P"Q' = 0, ,
which, from

what is done at p. 244, is the same as to put

d?ydPz — (PydPz = 0,

or to find the points of the curve which satisfy the equation

d^3 _ cPy

cPz d^y
'

If this equation can not be satisfied at any point of a curve

of double curvature, it clearly can not have a point of sin-

gle inflection ; while, if it can be satisfied at one or more

points of the curve, it is manifest that the curve may have

single inflections at such points.

To find the points of double inflection, we put the radius
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of absolute curvature of tlie curve of double curvature,

citber equal to or co ; consequently, from the expression

for R^ given at p. 243, we have

(Pa? + d?f + cPs== or 00.

Since tbis expression has been obtained on tbe supposition

of the constancy of d^ = c?*" + dy^ + d^^ we put the differ-

ential of this equal to naught, which gives

dx<Px + dyd?y + dzd?z^O or d?x s= - ^y^y-±^^
;

which, put for <Px in the preceding equation, gives

^y + ^,= + i^J&^^=Q or CO.

Because this expression consists of the sum of three

squares, it is evident that we must satisfy it by putting each

of its terms separately, equal to or oo ; consequently, these

conditions will be satisfied by

d'^y = or cPy = oo , and d?z = or d^z — oo

.

These conditions clearly follow from the projections of the

curve on the planes x, y, and x, s, which will manifestly be

plane curves having (each) the same number of points of

inflection ; consequently, from the rule given at p. 156, we

must have

-7^=0orv^=oo orTj- = and ^- = or ^ = 0,
dx ax d'y ax drz

which are clearly equivalent to the preceding conditions.

11*
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INTEGRAL CALCULUS.

SECTION L

(1.) The Integral Calculus is the reverse of the Dif-

ferential Calculus; the object being to find the function

called the integral, from which any proposed differential

may be supposed to have been derived.

Thus, since 2xdx and na?" ~ '^dx are the differentials of a?

and »", or (more generally) of oa'+ o and a3"+ e', c and c' be-

ing called the arbitrary constants, it follows that a? and as",

or, more generally, 3? -{- c and «" + c', are the integrals of

the proposed differentials.

In like manner, each of the examples given under the

rule at p. 5, when an arbitrary constant c (for generality) is

added to it, is the integral of its differential; so that the

most general integral of 6Mx la a? -{-c, and- that of -r- a;" ~'^dx

is r »" + c (see ^camples 1 and 4).

Hence, by reversing the rule at p. 5, it is clear that if we

have a differential, such that any power of a variable ex-

pression is multiplied by the differential of the expression

under the index of the power, which may be miiltiplied by

one or more constants ; then, the integral may be found by

the following
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BULK

Increase tbe index of the variable expression by unity,

and divide by the increased index and by the diflferential of

expression under the index, and add an arbitrary constant to

the result, for the integral of the proposed differential.

Thus, the integral of

(a + x"" + y'")p-^ X ~p {nx'^-'^dx + my"'-^dy)
c

is easily seen to be expressed by

-{a + x'^ + y'-y + G,

and that of (¥xYdFx is ^-5^4-' +
^ ^ n + 1

(Young's "Integral Calculus," p. 2); and it is manifest that

the integrals of all the differentials to which we have re-

ferred, can be found by the preceding rule.

(2.) The integral \'-j^ + C of {YxfdFx, admits of a

transformation, which we will now proceed to give. Thus,

representing the hyperbolic logarithm of Fx by log Fee, we
get from the exponential theorem or formula (5), given at

p. 51, (Fa;)" + i= 1 + («, + !) log Fa3 +

> + 1)^ (log Fxf {n + 1/ gog Fxy
,

1.2
"^

1.2.3 +i«°-'

consequently, ^^—^-3—|- is easily reduced to

or, representing + C by C, we shall have
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n + 1

log Fa? + ^ j^^^ '- + 12 3
"^ "^ '

for the required transformation, a series that evidently con-

verges rapidly, when % + 1 is small. If m + 1 = or

n = — i, the formula reduces to log 'Ex + C, which, since

dFx
n = — 1 is the integral of Ex-HEx = ^gr—) or using log G for

the arbitrary constant, and writing / before the differential

(according to custom) to indicate its integral (the / being

called the cha/racteristio of integrals), we shall have

-^p— = log Faj+log = (from the nature of log.) log GEx.

Hence, the integral of the differential of a function divided

by the function, can be found by the following

RULE.

The integral of the differential of a function divided by

the function, equals the hyperbolic logarithm of the function

plus an arbitrary constant; or, which comes to the same,

the integral equals the hyperboKc logarithm of the product

of the function and an arbitrary constant.

Eemark.—Any constant factor (or divisor) of the differ-

ential, must be retained in the integral, or the integral must

be multiplied (or divided) by it, according to the case.

The rule here given is clearly the reverse of that given at

p. 54 (when »i the modulus = 1), for finding the differential of

the hyperbolic logarithm of any expression ; deduced from

d (log aj) = — or from d (Log Ex) — -^p—

.
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Hence, the integrals of the diflferentialsj found under the

rule at p. 54, will reproduce the examples, after they are cor-

rected by the introduction of the requisite constants.

Thus, /^±|' = log(a, + y) + 0,
x + y

as ia example 2, and

/2mxdx r 2xdx . / 2 , sn , n

which, if >re is the modulus of common logarithms, is equiva-

lent to log (o^ + or) by using Log before a° + a? to express its

common logarithm ; as in example 3 (see p. 55).

rp, . ,
^

dx dx J dx , dx
The mtegrals of and 1

^— are
a-j-x a — X x + a x — a

log {a + x)+ log (a - «) + = log {a' - x^ + C,

and log (a) + «) + log (« — «) + log C — log C (a;^ — a").

The integrals of and
i , o i >

when reduced to

proper forms, are

|/^i = ^°s(- + 2.)-FC = log(. + 2.)T +

by the nature of logarithms, and

The integral of

/dx
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(3.) From what is sliown in (9), at p. 72, the following

table, which is very useful in finding integrals of differen-

tials of certain forms, by means of circular arcs to radius

unity, is easily seen to be correct.

/hdx . ,5: , „
—TTi—TsZ^ = sm-^-a? + 0,
y (a^ — V) a

,,
2 „ .^ = C0S-^-£» + C,

2 ,
, 2-2 = tan-^-!B -f- C,

^^^-^ = cot--c«+C,

/adx , i _,

x\/ (Irar — a/) a

/adx _,h.
, ^—7777-2 sT = cosec-^- X + C,

x\/ (oV — a ) a

r Mx . , 25=

J \/{a?x— ov) a'

r Mx . ,2¥— I -~mL iO\ = coversm-' -y « + C.

In using this table, it must be observed, that by the

notation sin~*- a;, is meant an arc of a circle whose radius is
a

unity, and sine - x, and, in like manner, the remaining ex-

pressions are to be understood. (See Young's "Integral

Calculus," p. 10, and p. 20 of his "Differential Calculus.")
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To perceive tlie use of the table, take the following

EXAMPLES.

1. To find the integrals of -^-7-
^r and —

,

'
' %,. .

|/ (1 — ar) ./ (1 — ar) .

Putting ic' = y, the second of these forms becomes

, , , ,;, which is similar to the first form. Hence, since
v^(i-y)
here a = 1 and i = 1, the integrals will be expressed,

according to the first form of the table, by

dx

f v{i-<^y
sin~^ x +

and J jiX_^\ = si^-' y + C = sin-i aj= + 0.

2. To find the integrals of

dx , dx
and —

By putting 1 and 2 for a and b in the first, and the reverse

in the second form of the table, we readily get the integrals

expressed by
2dx 1

- f-2J .

cos-* 2* + C
2 J |/(l-42!=) 2

3. To find the integrals of -z 1 and zfc
-—^-^

.

Putting 1 for a and for 5 in the first of these, and 2 and 3

for them in the second, we get, from the third and fourth

forms of the table, the integrals

r dx X 1 , n J I
/* ^'^ tan-' 3 ,

„
/ -——; = tan-*a!+0 and ± / 7-7-5-5 = —r-i o *»+ 0-
^1+0!- J 4t+9ar cot-* 2
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4. To find the integrals of

and —
X 4/ {9x^— 4) X V (9*= — 4)

By putting 2 and 3 for a and b in the fifth and sixth forms

of the table, the integrals will be found to be

r 2dx , 3 „
/ —77?i""2—K = sec-' H'*' + ^J X \/ (9a;^ — 4) 2

, r Mx i3 , n
'^'^'^ -7

VIq:?:^!)
= ^'^'"'^

2
'^ + ^-

5. To find the integrals of

dx , dx
and

4/(aj — a;^) y(4a! — aa!^)'

Putting a = 1 and 5 = 1 in the first, and a = 2 and 5 = 3

in the second of these, we readily get

/—r, ¥: = versin-' 2x + G
i^{x — x')

,
1 r Bdx 1 . j9 , ^and — o / -77T FiTTN = Q coversin-' '^ + 0-
3 »' 4/ (4-33 — 9ar ) 3 2

6. To find the integral of

dx „ ., . , , x~^dx
, or of its equivalent

Y (ax — bx^)
' ^

4/ (a — bx)

'

The integral of the first form, from the seventh form of the

table, is

r dx 1 . , 2& _,

/ —n TTn ~~/X versm-i —x + G,
J a/ [ax — OX') |/o a

and the integral of the second form, from the first form of

the table, is

r x-i_dx _ ^ . _, (l\^ i

and it is easy to perceive that these integrals are ec[uivalent
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(4.) If a differential consists of two or more terms, sucTi

that it has an algebraic sum of factors so related that the

differential of each factor is multiplied by the product of all

the remaining fectors, then, from reversing the rules at pp. 9

and 10, it follows that the product of all the (different) factors,

plus an arbitrary constant, willbe the integral ofthe differential

This rule is easily perceived to be correct by reversing the

methods offinding the differentials of the examples at pp. 9 to

11. Thus, from the differentials in example 1, at p. 9, we have

/ (xdy + y(M) = asy + ^

and C {^a?dy + Qyxdx) = 3 /" {3?dy + yda?) = Sx^y + 0,

And from the fifth and sixth examples, we have

a
I

{Sxy^s^d^ + 2x^ydy + y^s^dx) =

a I (xy^d^ + xz'ay' + i^z'dx) = axy^^ + 0,

and / {^xy-^dx — ^e^y-'^dy) =

/(y-Hx" + a^dy-') = a?y~^ +0 = ^ + 0.

Also, from example 4, at p. 10, we have

= ^{aJ' + x^i/{a^— a?) + 0= ^/(a* — a^) + C
;

and in the same way, the integral of

dx «?dx

y(a^ + a?)
~~

'Y(aF+Wf

is easily found to be . ^ „, + C as at p. 10.
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Remarks.—1. From the first of these examples, we have

J {xiy + ydx) = J xdy + j ydx = xy + G,

which gives / ydx = xy — I xdy + C,

and evidently reduces the integration of ydx to that of xdy
;

and, in like manner, the integral of xdy is reducible to that

of ydx. This process, which is often very useful in finding

and simplifying integrals, is called inteffration by parts.

2. To illustrate this method, we will apply it to find the

integral of 'K.dx, supposing X to be a function of x.

Because X.dx = X.dx + xdX.— xdX.,

by taking the integrals of these equals, we have

fxdm^Xx-fxdK;

and since dX.= -=- dx,

we have xdX. = -j- xdx,

dx

dK
dx

'

whichgives JxdX:^ -^ 2~Jl^ -T'
.,.,., „ rd^X x'dx
And m like manner, from / -^-^ —^

d^X x" r „^ a^dx

and so on, to any extent required.

Hence, from the substitution of these values in

/ Xdx — Xx — I -J-
^dx,

we get

/
^ - ^ dX x'

,
d'X a^ d'X x^

, » , r.Xdx=Xx- ^ j^- -,-_ -^_ -^ ^^^^ + &c. +0,
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whicli is called the Form.ula, or Series^ of John Bemouilli ;

which clearly shows that the proposed integral can always be

found, at -least in a series.

If we put a;, a?, a^, &c., successively for X, in the formula,'

we shall get

and so on ; results which are evidently correct.

It may be added, that Maclaurin's Theorem is applicable

to the expansion of / Xcfo. Thus, putting / X& for X in

Maclaurin's Theorem (J), given at p. 17, we shall have

fx^= (/I^)+(X) . + (f) t. + (g)_^ +,4.,

for the required expansion ; in which, for x, we must put

naught in the expressions within the parentheses, and the

term.( / Xt&) must clearly represent the arbitrary constant

Thus, if we put a^ for X, the formula becomes

/x^dx — C +
-J ;

since (a^), (Baf), and (3J32a!), are reduced to naught, when

naught is put for x in them, while the term

to) 12:3.4
^^^°°^^^ 3 X 2 X

1 X ^-2:374 = 4-

Mr. Young (at p. 81 of his " Integral Calculus ") says, that

Maclaurin's Theorem fails to be applicable, when x = 0.

reduces the preceding coef&cients to naught ; which is cer-
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tainly incorrect, since the Theorem is always applicable

when it has no infinite term (see p. 17). It may be added,

that Maclaurin's Theorem is (generally) more useful in

practice than that of Bernouilli.

(5.) By reversing the rule at p. 56, -we easily find the

integral of an exponential differential, when the exponent

of the exponential is alone variable, by the following

EULE.

Divide the differential by the hyperbolic logarithm of the

base of the exponential and by the differential of its expo-

nent, and add an arbitrary constant to the result for the integral.

The truth of the rule is manifest by reversing the method

of finding the differentials at p. 56.

Thus, from the first example we have

y2^ log 2dx — 2''\og2dx^log2dx + G = 2''+ C,

and fs" log Sdy^S^ + G.

Also J a" log adx = a'' + C and J e'dx = e^ + C,

supposing 6 to be the hyperbolic base.

And from reversing the rule at p. 59, it results that the

integral of a cosine of a variable multiplied by the differen-

tial of the variable, equals the sine of the variable plus a

constant. ' Also, the integral of minus the sine of a variable

multiplied by the differential of the variable, equals the cosine

plus a constant.

Thus, / cos 2x X 2dx = sin 2a! -f C,

and — / sin Sx x 3dx = cos Sx + 0.

And fcos 4:xdx = - / Adx x cos 4a! = —j (- C, and
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sin 5a! x 2dx = — p / sin 5a3 x 5dx = ^ cos 5x + C,

and so on, as in reversing the examples at p. 60.

Remarks.—We might, in like manner, proceed to reverse

the rules at p. 60, &c., but we do not think it necessary to

consider them any further in this place.

(6.) If any number of differentials are connected together

by the signs + and — , it is manifest that they are to be

considered as constituting one differential, whose integral

requires only one arbitrary constant.

Thus, if we have

2axdx + Sia^dx — 4ca^dx,

it is to be considered as a single differential, having

/ (a2xdx + 5 X Sx^dx —ex 4:a^dx) = asP + bs^ — ex* +

for its integral, C being the arbitrary constant Reciprocally,

for any expression like

/ {aa^dx + ¥ X dx — jpx^dx +, &c.),

we may, if we please, write

a
I a?dx + hj aPdx —p I a^dx

or / {a3?dx + haPdx) — / px^dx, &c.

(7.) It may be added, that the arbitrary constants in in-

tegrals, are (generally) to be determined so as to satisfy

certain conditions which the integrals must answer.

Thus, if the integral / {Sx^dx + bsd^dx) must equal naught

when » = a, we proceed as follows. By integration we have

f{Zx'dx + bxf'dx) = ar' + 2!= + G

;
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consequently, putting a for x in this, we must, from the con-

ditions of the question, have a' + a° + C = 0, which gives

C = — (a' + a'') for the value of the constant. Hence the

integral, duly corrected, becomes

f{Ba?dx + bx*dx) = aj' + as*— (a" + a°)

;

and it is manifest that we must proceed in like manner in all

analogous cases.

To signify that an integral, as

/ {axdx + hi^dx — ca?dx)

is to be taken from a? = A to a?= B, we write

/ (axdx -|- l)3?dx — ca?dx) = -^ +-k T' + ^»

which, by putting A for x, gives

„ /aA\ hA? cK\
^ = -l-2" + ~3—r/'

and thence the integral becomes

/ {axdx + Wdx — ca^dai)

~"2"^3 4 \2'*'3 4/'

which, by putting B for x in its right member, becomes

/ {axdx + Wdx — cvfdx)

_aW &B= _ dB* _ Iah2_ 'hj^_ ftA*\

~2"^3 4 l2"^3 4/

= |(B=-A=) + |(B^-A^)-|(B*-AO,

which is called a definite integral, because », in its right

member, is determined; consequently, when an integral is

12
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taken from one value of its variable to another value of its

variable, the integral is definite or determiiied, otherwise the

integral is indefinite or not fixed.

(8.) When the integral of a proposed differential is fcund,

it is said to be integrated ; and when the integral is taken

from one value of the variable (a;) to any other proposed

value, it is said to be integrated from the first to the second

value of the variable.

(9.) To aid in what is to follow, and to show the natures

of differentials and integrals more fully, we will now pro-

ceed to give the solution of the following important

PROBLEM.

If a; and y =/"(«) = a function of a;, represent the abscissa

and corresponding rectangular ordinate of a plane curve, it

is proposed to show how to lind the area bounded by the

ordinate drawn through the origin of the co-ordinates, by

any other ordinate, and the intercepted parts of the axis of x

and the curve : supposing the ordinate to be constantly posi-

tive between the preceding limits.

It is clear that we may suppose f{x) to be expressed by

A + Ba;" + 0*' -f Da;" +, &c.,

in which A, B, C, &c., a, 5, c, &c., are independent of x,

which, for simplicity, we shall suppose to be positive, and

that a;", aj*, af, &c., are arranged according to the ascending

powers of x.

Let then, in the figure, be the origin of the co-ordinates,

and suppose 04 represents any abscissa, and 4e the corre-

sponding ordinate ; we propose to find the area or quadrature

of the curve, bounded by the ordinates Oa and 4e = y, the

abscissa 04 = x, and the portion of the curve ae.

Suppose 2! to be divided into any number (w) of equal
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parts at the points 1, 2, 3, &c., and let x' represent any one

of these parts; then, the ordinates corresponding to the

points 0, 1, 2, 3, &c., may evidently be expressed by

A = y', A -f- Ba;"' + C^*" + &c. = y'\

A + B i^xj + C (2^;')' + &c. = y"\

and so on to

A + B {nx'Y + C i^jixj + &c. = 2/"+^.

Allowing the rectangles to be drawn as in the figure, it is

easy to perceive that the sum of all the inscribed rectangles

will be expressed by

(2/' + y" + .... + 3/'')a;' =
Knx' + B [1 + 2" + S"" + + (w — 1)"] «"'+*

+ C [1 + 2" + 3' + . . . . + (w - Vfl x'""^ +, &c.,

as is manifest from the principles of mensuration, while the

sum of all the corresponding circumscribed rectangles wiU

be expressed by
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Knx' + B [1 + 2" + 3" + . . . . + ^"l a;'''*'

+ C [1 + 2" + 3» + . . . . + «'] a)""^^ +, &c.

It is easy to perceive that the difference between the pre-

ceding sums of the circumscribed and inscribed rectangles is

expressed by
(yn+i_2^/) a,'-B?),V'+i+ C7iV'+*+ &c.= (Ba!"+ C*"+ &c.) a?',

since nx' =zx. Jf x' is unlimitedly small, the difference is

evidently also unlimitedly small; consequently, since the

difference is clearly greater than the difference between the

sought area of the curve and the sum of all the inscribed or

circumscribed rectangles, it is manifest that, by taking x'

sufficiently small, the sum of all the inscribed or circum-

scribed rectangles may be made to differ from the sought

area of the curve by a difference which shall be unlimitedly

small. (See Lemma II. , Book I. , of Newton's " Principia. ")

It is clear that what has been done holds' good, whether ae

is a curve or straight line, or even if it is a curve whose con-

vexity is turned toward the line of the abscissae or the axis of x.

We now -propose to put the above expressions for the

sums of the inscribed and circumscribed rectangles under

more useful forms.

By putting n — l = n', it is clear that we may assume

1 + 2" + 3" + . . . . + ?i"^ = P7i""+i + Qn'" + Rn'"-^ +, &c.,

and suppose P, Q, &c., to be independent of n' and

1 + 2' + 3* +, &c.,

clearly admit of like representations. By changing n' into

n' + 1, and subtracting the assumed equations from the

results, we get the identical equations
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(n' + 1)" — n'" + an"^^ + &c. =

P [(a + \) «"• + (^l)f w'«-i + &c.] +

a [an"-! + ^(^LZ^ ^'c-2 + &c.] +, &c.,

and so on; of course, by equating the coefficients of like

powers of n\ in the members of the equations, we readily get

P- ^ n-^ T?-*^ a_o.T- «(«-!) (^-2)
^ "a+ r ^~2' 3l' '

1.2.3.4.5.6 '

&c. ; and so on, for the other representations.

From the substitution of the preceding values of P,.Q, &c.,

by putting for n' its value w — 1, and expanding the powers

of »i -^ 1 according to the descending powers of n (as hereto-

fore) by the binomial theorem, we get

1 + 2" + 3" + .. . + (»i- ir = ^-if^ +^^ + &o.
^ a+1 1.2

~M=l~12'^^i^ 17273.4.5.6 +''^^-!

and by changing a into 5, c, &c., we get the corresponding

representations of 1 + 2* + 3* + . . . + (w — 1 )', and so on.

It may be proper to notice here, that the numbers

Q = — r-H, E = r-T, and so on, called the numbers of
\,A 0.4;

(James) Bernouilli, may easily be calculated to any extent, by

solving the equations

Q + I2 = ^' ^ + S+li3 = «'

-
"^

1.2
"^

1.2.3
"^

1.2.3.4
~

'

and so on. (See p. 98, Vol. Ill, of Lacroix's " Traite du

CalcTil Differentiel," etc.)
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Hence, from the substitution of the preceding values in

the expression for the inscribed rectangles, at p. 267, 'we

shall have
(2/'4-y" + ....+ y")a3' =

(An.' + -^-^ + -^^- + &c.) +

A-y' 1 1^ -
j^ [A + B (nxy + C {nxy + &c.J x' + ^^

[aB {nxy-' + JC (^la;')'-^ + &c.J x" -
^^.'SA.S.Q

[a(a-l) {a-2)B{nxy-' + l(b~l) (b - 2) C {nxy-'+ &c]

x'* + &c. = (since nx' = x) Ax H r- + -^—5- + &c.
' a+1 0+1

Ax' 1 1
+ -y- - ^ [A + Ba?" + C*" + &C.J «' + 3^

[aBiB"-' + JCaj'-^ + &C.J a;'^ - --^-—-

[a(a-l) (a-2)B«''-'+ 5(^'-l) (i-2) Ca;''-» + &C.J £»'* + , &c.

If, see p. 268, (Bx" + Cx" + &c.) «' is added to the right

member of this equation, the sum will express the circum-

scribed rectangles, and we shall have

(y" + y'" + .... + y-') x'^Ax+^ +
"f--^

+ &c.
'

-^+ ~[A + Baf+Ga^+ &c.J

.' + ij [aB.«- + 5C.-> + &C.J .'^ - j^^^-g

[a(a-l)(a-2)Ba!''-'+5(5-l)(5-2)Ca!''-»+ &c.] a;'*+,&c.

It is easy to perceive that the part

Ba!^ + i
Csj' + i

of the inscribed an 1 circumscribed rectangles, which is inde-
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pendent of x\ or does not depend on the number of equal

parts into which. 04 = a; is supposed to be divided, must

express the area of the curve bounded by the ordinates Oa

and ie, and the intercepted parts 04 and ae of the line of the

abscissae and carve, as required ; it is also evident that the

terms in the rectangles, which involve x' and its powers as

factors, must depend on the number of equal parts into

which 04 = a; is supposed to be divided.

„ . , 'Qdif'nx' Qx''nx' ,

±rom Anx + ^

—

\- -^ 5- +, &c.,
a + 1 0+1

which is the first form of

it is clear that

(A + B*" + Gs^ + &c.) x' =f{x) x' = yx'

is equivalent to the differential of the curvilinear area 04ea,

and may be expressed by writing dx for x' ; noticing that

the x' here used need*not be the same as the x' in the other

terms of the rectangles described above. Also, multiplying

by n, and putting nx! = ndx = a?, which gives

B£B"+1 C^'+i

a + 1 0+1
is clearly the same as the integral of the preceding differen-

tial, since the results are found by measuring the index of x

in each term of the differential by unity or 1, and dividingby

the measured index of a?, which is in conformity to the com-

mon rule for finding the integral of the differential of a power.

It is hence clear that the Differential and Integral Calculus

are deducible from what has been done, without using infin-

itesimals or limiting ratios. [See (17) at p. 44.]

It is hence easy to perceive in what sense the Integral
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Caleiilus may be regarded as being the reverse of the Differ-

ential Calculiis, and vice versa.

Eepresenting. A + Baf + Caj* +, &c., by y, the expression

for the sum of the inscribed rectangle, becomes

(y' + y" + .... + 2/")a!' =

since

and
[a(a-l) {a~2)Baf-^-[-h (J-1) (J-2) 0*''-''+ &c.J =

<Z» [A + Ba^ + Qx' + &c.] -^ rfar* = |^ ,

and so on ; a form which is substantially the same as given by

Lacroix, at p. 107 of his work, from very different principles.

By adding {y—y') a;' to the right member of the preceding

equation, we shall have {y" + y'" + + y)x\ the sum of

-

the circumscribed rectangles, expressed by

/
, y'x'

,
yx' 1 dy ,„ 1 d\ ,. ,

.

It may be added, that in the inscribed rectangles y' is the

first ordinate and y" the last, while in the circumscribed rect-

angles y" and y^ + * are the first and last ordinates.

If the preceding equations are divided by x', and % is

used to express the sum of the ordinates, taken according to

the preceding directions, we shall have

fydx

y x' +1.2 1.2^ ZAdx"" 1.2.3.45.6 c^ir''^
+'*°-'

and

^ -' 1.2 + 1.2 + 3.4 dx"" 1.2.3.4.5.6 "' +' *°- •

j ydx
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if we add y to the members of the first of these equations

and y' to those of the second, and write S before y to signify

the sum of all the ordinates, then the two equations concur

in giving

Sy = -^y + 2/

•^ ^ ^
.

y' + y .
'^ dy , 1 cPy

,

x' ' 2 ' SAdx 1.2.3.4.5.6 cZa;''

This formula enables us to find the exact or approximate

values of series, whose terms follow a given law of forma-

tion, and are equidistant from each other, or have equal in-

tervals between them.

Thus, to find the sum of the series 1^ + 2^ + 3^ + + a^,

we have y = x^, called the general term of the series.

Hence, Jydx = '^ + C, J = 2a;, and ^| = 0,

and since the difference of the successive terms of the series

0, 1, 2, 3, &c., equals 1, we put 1 for x', and 2y becomes

^ fj- + n-5 + C, the arbitrary constant C being — since

the value of y', which corresponds to in the series 0, 1, 2, 3,

&c., is equal to ; consequently, Sy is reduced to

a;' a? x

y~T''"2:3'

to which, adding y = x^, we have

Sy=ly + y=^ + - + ^^

— ^Jg^ -f 3a!^ + a; _ x {x+ 1) {2x+\)~
6

^
6

'

for the sum of x terms of the proposed series. In like man-

ner, to find the sum of the series 1, 2', 3" x^, we have
12*
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y' —0 and y = aj*, and thence

,..= ^ + C,and| = 3^, g=1.2.3, g=0,&c.

Hence, the formula

Sy = ^y + y

~J x' ^ 2 +3.4(ia;'^ 1.2.3.4.5.6 afar*
"^ +'*°-'

a^ a? x^ 1
since a;' == 1, gives 5^ = ^+2+4-120 + ^'

in which C is the arbitrary constant. To determine C, since

1

120
Sy=0 when a; = 0, by putting a; = we get = — --^ + C,

which gives C = ^^ ; consequently, we shall have

for the sum of x terms of the proposed series.

(10.) It clearly follows, from what has been done, that the

differential of a function of a single variable as a?, being of the

form f {x) dx, by putting fx = y becomes _/ (a?) dx = ydx
;

which may, if we please, represent the differential of the area

of a plane curve, whose ordinate corresponding to the ab-

scissa X, is represented by y =f{x).
Thus (see the fig. at p. 267), if 3c? = y —f{x) and 3, 4 = dx,

the product ydx =y (.r) dx = the area of the rectangle 3o?D4,

which may represent the differential of the curvilinear area to

the right of ?>d] consequently, the area to the right of the

ordinate %d, is the integral of the differential, supposing it-to

commence at the point where the curve cuts the axis of x.

If ydx =y (a;) dx is the differential of some known func-

tion of x, the integral / f (x) dx can be immediately found

;
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but if/ (x) dx can not readily be reduced to the differential

of a known function of x, then / f{x) dx— j ydx, being

reduced to the integral of the differential of the area of a

curve, will, from the sum of the inscribed rectangles, given

at p. 272, become (after a slight reduction)

/ ydx = (y' + y" + .... +y)x' - g' + g _ ^
dx"" + l.a.3.4.5.6 cf^r'

"^
'

*°-

'

a formula that will enable us to find an approximate value

of the proposed integral, when x' is sufficiently small, par-

ticularly when taken in connection with the integral

yx' 1

1.2 3.4

//7'w
jj—^ by the first of the preceding formulas,

Jyd^ = (y"+ 2/"'+. . . + y or y'-^Oa!' + 1^'

dx"^ ^ 1.2.3.4.0.6 dx' ""
'

*°-'

deduced from the formula, given at p. 272, for the sum of the

circumscribed rectangles.

To illustrate what is here said, we wUl show how to find

dx
"+^

when taken from the limit a; = to the limit 3?=: 1, or be-

r

—

^
—j. [See (7.) at p. 264.]

d i. -\- X

Here y = :j——-5, which, by putting x = 0, gives
Jl. "7~ OS

and putting x = 0.1 or x^ = 0.01, gives

y" = -~ =0.990099+;
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X = 0.2, gives y"'-^ = 0.961538+
;

and so on, to x = 0.9, which gives

y"" =0.552486+.

By adding the ordinates, we have

y' + y" + ....+/»= 8.0998+

;

and since the ordinates are drawn at intervals of 0.1, wo

have a;' = 0.1, and hence get

(2/' + J," + . . . . + yio)
a;' = 8.0998 x 0.1 = 0.80998 +.

Also, _ 1^ = - 0.05 and ^' = 0.025,

since for y we must put
:j

„ = „ , the last value of y.

And we have

dy
_j 1 2x

^ = '^T+^^'^"'=~(iT^/'

which, by putting 1 (the last value of x) for x, gives

^_ _ 1.

dx~ 2

'

consequently, -34^^" = 0.000416+

.

Hence, rejecting the remaining terms, on account of their com-

parative minuteness, and adding the terms found, we have

r»l ^-v.

= 0.80998-0.05+0.025+0.000416=0.78539+.
/:ol + a;'

From the third form of the table given at p. 257, -by put-

:j
-5 equals the

length of an arc of 45° of the circumference of a circle
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wtose radius =1, wWch is well known to be 0.78539+

;

consequently, the arc has been correctly found to five decimal

places, by a calculation of remarkable simplicity. By draw-

ing the ordinates sufficiently near each other, it is clear that

we may in this way find the circumference correctly to any

finite number of decimal places.

For a curve such, that the differential of its area is that of

an integral of a known form, we will show how to find the

area of a parabola.

Thiis, let ax = y^ represent the equation of the parabola

;

then, by taking the differentials, we have dx = ^ ^
,
which

gives ydx — —— , whose integral is

fydx = lffay = lt+G=.lxy + G,

from the equation of the curve.

To find the constant C, we shall suppose the area to com-

mence at the vertex of the' curve; then, x — gives

/ ydx = 0, and, of course, we shall have = 0, and the

ydx r= - 332/ = two-tMrds of the semi-pardb-

olaJs circumscribing rectangle ; agreeably to a well-known

property of tlie parabola.

(11.) Eesuming the figure at p. 267, and supposing it to

revolve about the axis of x or 04, it is manifest that the

curvilinear area will describe a portion of a solid of revolu-

tion ; and that the inscribed rectangles will describe cyliuders

inscribed within the solid, while the circumscribed rectangles

will describe cylinders circumscribing the solid, such that

the solid will be greater than the sum of all the inscribed
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cylinders, and less than the sum of all the circumscribed

cylinders.

If 77 == 3.14159, &c., the cylinder generated by the revolu-

tion of the rectangle 01Aa will, by mensuration, be expressed

by rry'^x', and in like manner aU the remaining inscribed

cylinders may be expressed.

Hence, if y, y\ y", &c., are changed into Try', Try'-, ny"^,

&e., the formula for the sum of the inscribed rectangles, at

p. 275, will become

J^yHx = 7:Jy'dx = tt [(y'^+y"=+ . . . . + y"=) x'-^^ +

1.2 ~^A dx + 1.2.3.4.5.6 dj?
'^ '^ *°-J'

the formula for the sum of all the cylinders inscribed in the

portion of the solid of revolution ; and in much the same

way, the sum of all the cylinders which circumscribe the

solid may also be found.

Noticing, ,that this process will be unnecessary when the

integral expressed by / -if'dx can readily be found.

Thus, in finding the contents of the paraboloid described

by the revolution of the parabola ax = y^ about the axis

of X.

Since dx — , we have y^dx = ^
,

and thence we get

Tryy&,_Try-- _— __,
which equals half of the cylinder which circumscribes the

paraboloid ; noticing, that no constant is necessary, since the

paraboloid equals naught when a; = 0.

For another example, we will show how to find the con-

tents {or cubature) of a sphere whose radius e<^Uals R.
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From what is shown at pp. 210 and 211, it is manifest that

if the sphere is cut by a plane whose perpendicular distance

from the center is «, the section will be a circle, such that

W — x^ will equal the square of the radius of the section

;

consequently,

n (E^ — x^) dx = n {Wdx - x'dx)

is clearly the differential of the portion of the sphere, between

the cutting plane and a parallel plane passing through the

center of the sphere. Hence, by taking the integral from

a; = to iB = E, we have

t/
x^) dx («-?) = -E»

for half the sphere ; consequently, the contents of the whole

sphere is -5- E^ which clearly equals two-thirds of the cir-
o

cumscribing cylinder.

(12.) "We now propose to show how to find the lengths of

plane curves.

Thus, let AB and BC represent the abscissa and ordinate

of any plane curve AC, having A for its vertex, which we

shall take for the origin of the co-ordinates, supposed to be

rectangular. Then, representing the arc of the curve AC
by 3, the abscissa AB and ordinate BC by x and y, we may
clearly take the very short line Cs parallel to AB, to stand
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for dx^ the differential of x, and st parallel to BC or y, meet-

ing tlie tangent to tlie curve at C in <, to stand for dy, then

it is clear that C<, the hypotenuse of the right triangle Ost,

must equal dz, the differential of s, or we shall have

dz = V{da? + dy^ = dx |/ {l + (g)'}

for the differential of the arc AC = z.

What is here af&rmed, is clear from the definition of a

tangent given at p. 125, which is that the differential co-

efficient -^ at the point in the curve must be the same as

in the tangent ; consequently, using 0* to represent dx, st

must represent dy, and thence Ct must clearly represent ds,

as above.

Because the approximate method of finding the integral

of the differential is sufficiently evident from what has here-

tofore been done, we shall not stop to give it.

Thus, to find the length of the curve whose equation is

jr"= aaP, called the equation of the semicubical parabola, by

talcing the differentials, we readily get

dy=--^ a'x ^dx,

and thence ds = /»*+ 5 a ) a; ^dx;

whose integral is z = (a3*+ ^ a*j + 0,

C being the arbitrary constant If x and z equal naught at

the origin of the co-ordinates, we shall have

(|a^)+C = 0, or C=-^«.
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Hence the correct integral becomes

'

/ f ,
4 f\* 8

27

consequently, the proposed curve is said to be exaetly recti-

ficMe, because the integral of its differential can be exactly

found.

For another example, we will find the length of the com-

mon parabola, its equation beiag ax = yK

By taking the differentials of its members, we have

a '

2

which, by putting „ = 5, gives (M — ^-~-
;
consequently,

¥ + v^
dx'+df = ^^df,

or ^(^dx^ + df) = d. =^+^^
idy y^dy

adx = 2ydy, or dx

Hence, since

and that

.-, ^ VQ>'' + y')dy ,we have reduced -^—^

—

, to

1 d. 4/(&y + yo + 1
(i +—^—

^
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Hence (see the last example at p. 256), we shall have

= |^|/(y'' + 5=) + |log[>+V(y= + 5^)] +0,

by representing hyperbolic logarithnas by log, and using C
to represent the arbitrary constant.

By putting y = 0, we shall clearly have 3=0, and

thence C = — ^ log h ; which reduces the integral to

f^s^'M = I vy + »., + 1 logy±^n
Hence the common parabola is rectifiable in algebraic and

transcendental terms, but not in algebraic quantities, like tbe

preceding example.

For another example, it may be proposed to find an arc

of a cycloid, reckoned from its vertex.

/^f a;

By referring to page 150, we have dy = y dx,

r being the radius of the generating circle, and x and y the

abscissa and ordinate ; consequently,

dy^ + dx^ = dz^ — — dx^

fdz =f

2r
= as' —

VSr dx

X

= 2V2r^/x = 2V2rx,

which needs no correction, supposing the integral to com-

mence with X.

Hence, see the fig. at p. 149, it is clear that the cycloidal

arc DG = 2DF = twice the chord of the corresponding arc

of the generating circle ; consequently, DG^ or s^ = 8rx.
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(13.) "We will now proceed to stow how to find the sur-

faces of solids of revolution.

Thus, supposing the fig. in (12), at p. 279, revolves about

its axis AB, it will generate what is called a solid of revolu-

tion, whose arc AG will describe its curve surface, which

we propose to show how to find.

Because C< = c^s = the differential of AC = s, it is mani-

fest that dz, multiplied by the circumference of the cu-cle

whose radius equals BC — y, will represent the differential

of the surface described by the arc AC in one revolution

about its axis AB. Hence, putting tt = 3.14159 + ,
and

representing the surface described by AC by S, we shall

clearly have dS = inydz for the differential of the described

surface.

Thus, to find the surface of a sphere whose radius is r, we

shall evidently have r : ywdz: dx, (or OS), (from similarity of

triangles, since the radius drawn to C cuts C^ perpendicularly,

and that when the angle TCB is acute, the center is at the

right of B in AB), or ydz = rdx ; consequently, (^3 = ^Ttydz

reduces, by substitution, to c?S = 2Trrdx, whose integral is

I
dS =^

I
2Trrdx or S = 2nr'x, which needs no correction,

supposing the surface S to commence with x. If for x we

put 2r, the integral becomes S' = 4it/°, where S' stands for the

whole surface ; consequently, since ttv- = the surface of a

great circle of the sphere, it follows that S', the whole surface,

equals four times the area of a great circle of the sphere ;

and from S = ^Tzrx, it is manifest that the variations of S are

proportional to those of x.

If we take cfe, in the parabola given at p. 282, we shall

have d^^^^^t±fly^,
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for the differeatial of the surface of the common paraboloid,

whose integral

'd^=^fV{h' + f)ydy gives S = g (J^ + 2^)* + C,

C being the arbitrary constant.

To determine C, we suppose S and y to commence together,

and thence get

4-7r 4-7r 1

C = -y5=, which gives S =
|^

[(J« + y=)* - 5"]

for the correct integral.

We will now show how to find the area of the surface

generated by the revolution of the catenarian curve about

its axis, supposing the equation between the length of the

curve and the corresponding abscissa to be expressed by the

equation s'^^2ax+x', or by its equivalent, -/ {a? + z^-=a-\-x.

By taking the differentials, we have

_ zdz

consequently, since dz^ = da? + dt/% we have

dy" = dz^ —dx"— dz'
a' + z^ a^ + ^

, adz
or dy = .

3
-—57.

Because

c?S= 2TTydz= 2tt (ydz+ zdy— zdy) = 2 n- (dys— zdy),

we have, by taking the integral,

C being the arbitrary constant, which equals 2na^ or
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when S = at the vertex of the curve. Because

a? ~ a \/{a? + s^) = — ax,

our equation is equivalent to S = 2Tr {yz — ax), as required.

For the last example, we will show how to find the surface

generated by the revolution of a cycloid around its base.

Thus, by referring to the fig. at p. 149, since BD = 2r and

DE = X, we have BE = 2r — x = the perpendicular from G
to the base AC of the cycloid, and which revolves about the

base ; and, from the example at p. 282, we have

ds = \/ — dx= V^r x~^dx.
' X

Hence, putting 2r — x for y, and V2rx~^dx for ds in

dS = 2nyds, we shall have

dS> = 2TTV2r (2r — x) x~^dx — 2nV2r (2/-iB"*<& — x^dx)

for the differential of the surface generated by the revolution

of the cyclodial arc DG about BC, since this increases pos-

itively, while that described by GO decreases. By taking

the integrals, we have

S=27r V2r{j2rx~^dx -fx~^dx) z=2 nV2r Urx^ " | '**)

5

which needs no correction, supposing the integral to com-

mence with X. 'By putting 2r for x, we have

S=27r V2^{4:r \^- ^ r V2^) = 2n V2?x ^rV2^^ ^-^
o o o

for the surface described by the semicycloidal arc DC about

BC, and of course —^— is the whole surface described by

the revolution of the cj'-cloid around its base, as required.

(14.) We will now show how to use polar co-ordinates in

finding the areas and lengths of curves.
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Thus, let AC be a curvB, having P for its pole, PC = r

and the angle APC = for the polar co-ordinates of any

point C of the curve ; then, shall -^ equal the differential

of the curvilinear area APC.

For, taking PB and the perpendicular BC for the rectan-

gular co-ordinates of C, and denoting them by x and y, their

origin being at P ; then, from what has been shown, ydx is

the differential of the area ABC. (See p. 266, &c.)

Also, since the area of the triangle PBC equals -^, and
it

that the curvilinear area APC = the area ABO — triangle

PBC = the area ABC ^, by taking the differentials of

those equals, we shall have the differential of the curvi-

linear area

APC -ydx- y^JrJ^ - ycfe - xdy

Because tan angle BPC = — tan = -

,

by taking the differentials of these equals, we shall have

«f xdy — ydx , , a?d<b
2- = •

,
—— , or ydx — xdy =—^- = r^d^

;

cos^ <j) a? •' cos^ <j>

consequently, we have the differential of the curvilinear area
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2 7,

APC = —^ , as required. Hence, if PE makes the small

angle CPE equal to d<p with CP, d^ being an arc of a circle

to radius 1 ; then, it is clear that the circular sector CPE,

whose center is at P, will represent the dififerential of the

area APC.
Thus, if AC is a parabola, having Kx for its axis and P

for its focus ; then, representing AP by m, 4m will be its

parameter, and we shall have (by a well-known property

of the curve)

Am (m + a;) = ij/t^ + 4:inx = y^,

or 4:m' + Arnx -f a;^ = (2/rt + »)' = ar' + y'' = r^,

which gives ?• — £» = Im ; or, since a; = — r cos <^, we have

r (1 + cos 0) = 2m ; and, since

1 + cos 1^ = 2 cos'' q , we get r = ,

COS''

2

for the polar equation of the parabola.

Hence, —^ becomes

rr)/ -^ mrd .ta.n. -zr
. . .^

2 2 „ / , <^ „ ^ , <A\
7 =— = m^[d. tan ^ + tan" - d . tan j^ I,

p <p \ A i II
cos* jr COS'' jr

whose integral taken from ^ = 0, gives

as required ; a result that is very important in treating of the

parabolic motion of comets. (See Vince's "Astronomy,"

vol. I., p. 428.)

For another example, we will find the area of the spiral of
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Arcliimedes, wbose equation is r = a^. By taking^the dif-

ferentials, we have

dcl>=—, winch gives -2" = "2^'

whose integral, taken from ? = 0, is

6a'

In like manner, from the equation r = a*, the equation of

the logarithmic spiral, by taking the hyperbolic logarithms,

we have log »• = ^ log a, whose differentials give

— = <Z<i log a or M = -^ ,

r r log a

, , i^d(t) rdr
and thence

—
2 2 log a

'

whose integral, taken from r = 0, gives

J 2 4 log a

'

By taking ?• = - , or ^ = - , the equation of the hyper-

bolical spiral, we get

,^ adr -, ^, r'd<l> adr
d<p= -J , and thence -^- = „-

;

whose integral, taken from r= r', is

/r^d<l> _ a(r' — r)
~2' ~ 2 '

which, taken to r = 0, or an infinitesimal, is

/r'd(j> ar'

IT ~
2 '

which equals the area of a right-angled triangle, whose per-

pendicular sides are a and r'.
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Eemaeks.—In treating of spirals, it will sometimes be

convenient to consider the pole as moving, according to some

given law, instead of being fixed, as is usually dona

Thus, let a thread be wound from A around the circle

ADB in the direction of the letters A, D, and B; then,

when the tliread is unwound from A, so as to be constantly

a tangent to the circle, the extremity A of the thread will

describe a curve AC, called the Involute of the Circle, to

which the tliread is clearly constantly perpendicular, while

it unwinds ; so that BG denoting any unwound part of the

thread, it is manifest that BC cuts the curve AC perpendic-

ularly at C, and is at the same time a tangent to the circle at

B, and equal in length to the circular arc ADB. (See Sec.

VI., p. 163.)

"We now propose to show how to find the area of the invo-

lute bounded by the arc AC, the unwound part CB of the

thread, and the circular arc ADB.

Eepresenting OC by r, the radius OB of the circle by R,

the right triangle BCO gives BC = 4/ (;* — E^) = the circu-

lar arc ADB. Hence, equals the arc to radius

= 1, which represents the angle AOB, which we shall take

for ^, and for r we shall take 4/ if^— W).

13
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rd)'
Hence, from (j> = ^^

^-, we get c£i^ = gT7?,T^E2x>

and this multiplied hjr^ — E^ tlie square of the correspond-

ing radius vector, gives

2
~

2E

for the differential of the sought area: since the angular

motion of BC is clearly the same as that of the perpen-

dicular radius OB, it is clear that the angle (p has been cor-

rectly represented, while the pole moves from A, on the

circular arc from A through D to B.

By taking the integral of the differential equation, we

have
rV{r^-W)rdr _ {r-'-Wf
J 2R ~ 6E '

for the correct area ; supposing it to commence when ?• = E,

or when y'(/-=— E^) = 0.

Hence, since the circular sector (from the principles of

geometry) ADB = OBC, it follows that we shall have the

area

AOBC-OBC = the area AOC= the areaACBD= ^^°T-?'^ ,

0x4

which agrees with the area usually found. (See p. 76 of

Vince's "Fluxions.")

(15.) To find the lengths of curves by using polai? co-

ordinates, we proceed as follows

:

Thus, by using the figure and notation in (14), at p. 285,

we have a; = — r cos ^ and y =-r sin ^,

which give dx = — cos ^dr + r sin 0c^

and dy= sin ^dr -|- r cos <
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whicli, by taking the square roots of the sums of their

squares, gives

^{da? + dy") = V^d^^+dJ^ = j/(r' + ^\ x d<l>.

From what is shown at pp. 133 and 134, since

^{daf + dtf) = ds, the differential of the arc AC,

it results that in polar co-ordinates we shall have

ds = V{^d<p' + dr") = j/i^r-" +
J])

#
for the differential of the arc AC = s, as required.

Eemakks.—1. By referring to the figure at p. 131, and to

what has there been done, taken in connection with what

has been done above, it follows that the normal to the curve

at C, limited by the perpendicular through P to the radius

vector PC = r, equals y ('/" + y-rX since (see page 132)

dr'
-=-2 = the square of the subnormal. Hence, by putting the

normal yir^ + -^1 = N", we have Nc^^, from what is

shown above, for the differential of the curve s, in polar co-

ordinates ; in which <j> — the angle APC, and observing that

d(p equals the differential of the angle which the perpendicu-

lar to PC through P makes with the axis AB of x ; noticing,

that (if we please) we may regard — d(p as being the differen-

tial of the angle which the normal to the curve at C makes

with the perpendicular through P to the radius vector

^• = PC.

2. If a perpendicular from the pole P is drawn to the

tangent CF produced, and t denotes the distance of its inter-

section from C, then, from equiangular triangles, we shall
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have «:PC::FE:CF, or t : r '.: dr \ dz,

wluch gives dz = -— for another expression of the differen-

tial in polar co-ordinates.

Otherwise.—^Referring to the figure at p. 131, it is clear

that the right triangle t-SN gives the radins vector

r-S = r- = SN sin N = W sin N,

by using N' to represent the normal SN.

By taking the differentials of the equation ?• = N' sin N,

supposing N' to be constant or invariable, we have

dr = N' cos Nc^K = W cos Nc^<^,

as is manifest from what has been shown ; also, fi'om what

has been shown, we have 'S'd<j> = dz, the differential of the

arc AS, and of course dr = cos 'Nds. Sinc9 cos N = sin rSN,

if we multiply the members of this by r, we shall have

rdr = r sin rS'Ndz, in which r sin rSN = the perpendicular

from r to SN, which evidently equals t.

Hence, we shall have idz = rdr, or cfe = —
- , the same

t

result as found from the preceding method.

Thus, to find the length of the logarithmic, or equiangular

spiral, since - = the secant of the angle at which the- radius

vector cuts the cm-ve, if we represent the secant by s, we

shall have dz = sdr, in which s is constant, since the radius

vector always cuts the curve at the same angle. -

Hence, by taking the integral, we shall have I dz = s j dr

or 3 = sr, which needs no correction, supposing the integral

to commence with r ; and it follows that z varies as r.

For another example, we will take the spiral of Archimedes,

whose equation is r = a4>.
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By taking the differentials, we have dr = ad^ ; and thence

dz^ ^ {fd^^ irdr^)^\/{^ +\\dr= ^ /^ if + a=) dr,

which agrees in form with the differential of the length of

the common parabola given at p. 281, when we put y and S

for T and a. Hence, putting r and a for y and J at p. 282,

we have

^ = Ta
^('•= + «=)+2log ~

as required, in which z commences with r.

For further illustration, we will find the length of the

involute of the circle.

By proceeding as at pp. 288 and 289, and adopting the

same notation as there used, we have

, rdr

which, multiplied by 4/ {r^ — W), taken for the radius vector,

gives & = 4/ (/-^ — E^) d<j) — -^

;

whose integral gives

.y"i/(r=-R=)<^^=/^ = 2R

supposing that the integral commences with /"= R ; noticing,

that in this solution the pole is supposed to move from A,

around the circumference of the circle, in the order of the

letters A, D, B, as at p. 288.

For the last example, we will take the reciprocal spiral,

• • 1^1
whose equation lar = - or 6 = -.^

<!> r

By taking the differentials we have
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d<l> = '^, wliich gives dcp^ = -^, or rW = ^;

and thence we have

(^^ + 1)? rdr dr

^d^{r^ + 1) + d(\og r) - d {log [4/(P + ?•=) + 1]} ;

consequently, by taking tlie integrals, -we stall have

, = ^e^ + i)_iog-i^(!l±ll±i + o,

C being the arbitrary constant ; this integral is clearly the

same as s = ^{r" + 1) + log ,^^,a^\s ^^ + 0,

which wUl clearly enable us to find the value of s that cor-

responds to the interval between any finite values of r.

(16.) We will now show how to find the contents or. vol-

ume of a solid, the equation of whose surface can be ex-

pressed by an equation between the rectangular co-ordinates,

£p, y, and s, without regarding the body as being a soHd of

revolution,

It is majiifest that we may regard the very small parallel-

epiped expressed by dxdyds, as being the differential of the

solid, and represent its integral by flfdxdydz, by using the

/ successively to represent the separate integrations with

reference to s, y, and x.

Thus, by performing the first integration with reference to

z taken between the plane «, y, and the surface of the body,

the integral is reduced to the iovva. ffzixdy \ which may be
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integrated again by regarding z as being a function of x

and y.

If we at first integrate witb reference to y by regarding

X as constant, we shall h&re JJsdxdyz= j dx j sdy , in

which / zdy denotes the area of a section of the solid by

a plane that is parallel to the plane of the axes of z and y ;

then, having found the integral / zdy, we can find the in-

tegral I dx
I zdy, which being taken between proper limits

of X, will give the required volume of the solid.

It is manifest that we may perform the integrations in the

forms /J zdxdy = I dy I zdx, instead of using the preceding

forms ; noticing, that those forms which are the simplest in

the integrations are always to be chosen.

It ought to be added, that to find the integrals in the

simplest manner, the planes of the co-ordinates should be

drawn, if possible, so that they may divide the body into

equal parts.

Thus, to find the volume of the ellipsoid whose equation

/yp np- ^2

is —s+-T^+—t;=1i it is manifest that the planes of its
a- 0' <r

axes are those of its co-ordinates.

Then, to simplify the equation still further, we put

m = ax\ y = by', and s =: gz', which, by substitution, re-

duce the equation to x'"' + y'^ + z'^=l; the equation of the

surface of a sphere, having 1 for its radius. Since

I zdx = ac I z'dx', and / dy' I z'dx' = abcjj z'dy'dx'

,

it manifestly follows, that if we multiply the volume of the
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sphere whose radius equals 1, by the product ale, the result

will express the volume of the proposed ellipsoid.

Now, from x'^ + y" + s"= 1,

we have z'^^il-y"- aj'O = V (^"- «").

by putting r'^ = 1 — y'^
; consequently, we shall have

ffz'cly'(hi'=ff^{r'^ - x'-^dy'dx'=fdy'f^{r'^-x")dai'.

It is manifest that to find the integral / \/{r'^— a?'^) dx\ r'

must be regarded as constant, and that it will be sufficient to

take the integral from »' = to a?' = r', since the whole in-

tegral can thence be readily found.

It is manifest that

which equals the fourth part of the area of a circle, whose

radius is r' or |/(1 —-if). Hence,

Jdy'J{r'^-x"^dx' becomes '^f{l-y")dy',

whose integral it will be sufficient to take from y' — to

y' - 1, which gives gj fi-
— v") dy'=

-^,

for the eighth part of the sphere, whose radius = 1.

Hence, —^— is evidently equal to the contents or volume

of the proposed ellipsoid, as required.

It may be added, that, to simplify the integrals// sdxdy,

we sometimes put y= xu, and thence, since x and y are

independent variables, get dy= xdu, which reduces

JJ zdxdy to JJ zduxdx=J duj zxdx.
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Thus, in finding the volnme of the sphere -whose eqiiation

is 33^ + y^ + s^ = E^, we have

s = i/QS?- x"- y") = ^(W -x"- a?vF) ^ ^/[R^ - ar" (1 + u%

by putting y = xu. Hence, the integrals // sduxdx become

fduf\W - aj^l + «') fxdx =

byregarding u as constant in the integration, and using C for

the arbitrary constant/ Supposing the integral to commence

when as = 0, we have C = ^-^j j- ; then, if the integral is

R
extended to a; = —-r:, ^r , we shall have

4/ (1 + u-)

fdufvW-x'{l + u') xdx = y/j-^

dy
- 3

^^"^
x'

- (I)

in which the arc tan"'' - must clearly be taken from - =
X •' X

to - = infinity, and of course the arc equals ^ ; conse-

R'tt
quently, —^ is an eighth part of the sphere, and its volume

equals , as required.
o

Remarks.—1. If we change the rectangular co-ordinates

X and y into the polar co-ordinates x = r cos ^ a,nd y=t sin </>,

13*
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r being the radius vector (ia the plane x, y, drawn from the

origin), and (p the angle it makes with the axis of x
;
then,

bj assuming djs = — >• sin (l>d4> from x'^ + y" = /', we have

yd^ = rdr, on assoant of the independence of x and y, or

dy — — =^ -. ; consequently, dxdy = — rdrd(p] noti-

cing, that if we had assumed dy ^: r cos <^i</), we should,

dr
from a? + y^ — r^, have had dx = , and thence^ '

cos 0'

dxdy — rdrd(t> ; so that regarding dr and dcf) as being posi-

tive, the transformations ought to be taken absolutely, or

without reference to their signs. Hence, zdxdy will be

changed to 3rdrd<t>
; which will often be found very useful

in integration. Thus, to find the volume of the sphere

whose equation isW = 3?+y-+ z- ^=r^+s-, we immediately,

on account of the constancy of R, get

rdr + zdz = 0, or rdr = — sdz,

which reduces zrdrd<t> to — z^dzd<p. Hence, we have

ff— z^dzd<l> — — 2irfzHz,

since the integral with regard to ^ ought clearly to be taken

throughout the whole circumference. By taking the integral

-2tt I z-dz from s = R to s = 0, we have

-2tt fJ :

z'dz — —^

for the volume of half the sphere, and of course that of the

•6

47rR'
whole sphere is —^— ; the same as found by the preceding

methods.

2. It is easy to perceive that we may transform the infin-
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itesimal solid dzdydx by polar co-ordinates after the foilow-

ing manner.

Thus, let r denote its distance from the origin of the co-

ordinates, and d the angle it makes with the plane oi x, y;

then, r cos Q being represented by r', it will be the projection

of r on the plane », y, and we also haye r sin B ^ s.

Hence, if r' makes the angle ^ with the axis of aj, we

shall, from what has been previously shown, get

dxdy = r'dr'd^.

Since r^ = r"^ -f- s^, if we assume dz =:r cos ddB, it results,

from the independence of r' and z, that we must assume

7''(fr' = rdr ; consequently, dzdydx is transformed to

r" cos OdrdOdfj}.

Hence, Jjj dzdydx = I dydxdz,

called a triple integral, is transformed to the triple integral

J r= cos edrdddi) = Jr^dr J cos Odd Jd<j> ;

noticing, that two successive integrations are called a double

integral, and so on, according to the number of successive

integrations. It may be added, that the preceding trans-

formation is essentially the same as that of Laplace, at p. 6,

voL II., of the "Mecanique Celeste,'' and that of Lacroix, at

p. 209, vol. II., of his " Traite du Oalcul Integral."

By applying the preceding formula to find the contents of

a sphere whose radius is E, it is manifest, as before, that the

integral with regard to dO must be taken through the whole

circumference, which reduces it to

fr-drfcos Odd fd<t> = 2n fi^d/'Gos 6dd-
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•wliose integral with regard to must be taken from

sin 6 = — 1 to sin 6 = 1,

which reduces it to

2tt fr'drj'cos Odd = ^n Jr^dr;

v.hose integral, with reference to r, must be taken from

r = to 7* = R, which gives

47rR'

'/47T / r^dr
3 '

for the volume of the sphere.

(17.) We now propose to show how to find the surface of

a body or solid, on suppositions like to those in (16), and

shall premise the following important proposition

:

Thus, let ox, oy, and oz, be three rectangular axes having

o for their origin ; then, the square of the numerical valvs

of the face xyz of the triangularj>yramid oxyz, equals ilie

sum of the squares of tJie num,erical values of the three re-

mai7iivg faces of the pyrainid.

For representing ox, oy, and oz, severally by a, 5, and o,

the right triangles oxy, oyz, and oxz, severally give

V{a'+l% VQ^+<^), V{o? + c'),

for the representatives of the sides xy, yz, and xz, of the tri-

angular fece xyz of the pyramid.

Hence, since the triangular faces oxy, oys, and ooos, are
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severally represented by -^, -^, and -^, we propose to show-

that the square of the face ayyz equals

.3
a^lf 5^ aV _ aV + 5V + aV
^ + ^ "^ 4 ~ 4

If, for brevity, we represent the sides xy, yz, and xz, by

A, B, C ; by a well-known rule for finding the area of a

triangle from its three sides, we shall have the area of the

triangle xyz expressed by

A+B+C B+C-A A+C-B A+B-
X ^ X K X TT"^

V 2 2

whose square equals

(B + Cy - A? A^ - (B - 0)=
_ X

^

_ E'' + 0=' - A^ + 2BC A°-(B^ + C'') + 2BC-
4

X
4

_ 2BC + (BHC^-A^) 2BC - (B^ + C - A^
-"

i
^

4

__ 4B^0- - (B^ + C - A^y~
16

From the substitutions of the values' -/(a^ + 1% ^(b^ + c^),

and \/{a?+ (?), of A, B, and C, in the preceding equation, we

have the square of the face xyz equal to

16
~

4 '

as required. It is clear that the triangles xyo, yzo, and xzo,

are severally equal to the projections of the triangle xyz, by

-perpendiculars upon them. And since, from principles of

geometry, the perpendicular from o to the face xyz, multi-

plied by it, equals the perpendicular oz multiplied by the
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triangle yxo^ to which it is perpendicular, each product being

three times the pyramid, it follows that the triangle xyo

equals the triangle xyz multiplied by the quotient resulting

from the division of the perpendicular from o by os, which

is clearly the cosine of the inclination of the face xyz to the

face xyo.

Hence, the cosine of the inclination of ayz to either of

the other faces multiplied by xyz equals the other face;

consequently, from what has been shown, it follows that the

sum of the squares of the cosines of the inclinations of the

face xyz to each of the other faces equals unity or 1.

Hence, also, any plane in the plane xyz is such, that its

square equals the sum of the squares of its projections on

the three planes xyo, yzo, and xzo.

We will now suppose the curve surface to be touched by

a plane at any one of its points, and that an unlimitedly

small portion of it at the point of contact, having two of its

opposite sides parallel to the plane of x, z, and the other two

opposite sides parallel to the plane of y, 2,. is taken for the

differential of the curve surface. Then, the projections of the

parallelogram thus formed on the planes x, y, x, z, and y, z,

will evidently be parallelograms whose areas may be ex-

pressed by the products dxdy, dydz, and dxdz ;
consequently,

from what has been shown, we shall have
'

dx'df + difdz'' + dx'dz' = dafdf ll + {-^ + (^)'}

for the square of the differential of the curve surface, and

of course if d'-S represents the differential, we shall have

for the required differential of the curve surfaca
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It may be noticed that -r- and -j^, wHcli sappose s to be a

function of x and y, have heretofore been represented, as in

Sections 8 and 9, by^ and q; agreeably to which, if we please,

we may write the preceding equation, according to custom, in

the form cZ^S = dxdy\/{l +p'+ q").

It may also be noticed, that' according to what has been

shown, i/(l+y + .=) = /{l + (S)V(|)l

equals the reciprocal of the cosine of the angle made by the

tangent plane with the plane », y.

To illustrate what has been done, we will apply the for-

mula to find the surface of a sphere whose equation is

z^ + f + x^ — R=

By taking the partial differential coeficients, we get

cfe a? , cfe y
ax z dy z

which give

^^Wx) -^\dy)
-^-^^-^^ ? = ^'

consequently, we shall have

by putting E'^ = E^ — yl By taking the integral relatively

to a?, or by regarding E' as being constant, we have

dS> ^ r dx
-D 1 a? T. • 1 a'

dy J |/(E- — »-) E |/(R- — y^)'

which, taken from a; = to a; = |/(E^— y^), gives y = —
-

;
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consequently, dS = -^- dy, whose integral is S = -„- yi which,

taken from y = to y = E, is -^ , the eighth part of the

surface of the whole sphere, which, of course, equals 4R'7r,

four times the area of a great circle of the sphere.

Otherwise.—^By putting the equation of the spheric surface

in the form

R' = ari + / + s= = T-" + z\

we shall, by the notation at p. 298, get

dxdy = rdrd<^ = — sdsd<j),

and thence (PS = — sdzd(f> x — = ^ dsBd(l>
;

whose integral relatively to (j> must clearly be taken through-

out the entire circumference, and gives ds =: — 2B,'rrdz
; and

the integral of this must evidently be taken from s = — E
to s = R, which gives 4:nW for the whole surface of the

sphere, the same result as by the preceding method.

(18.) We will now proceed to show the use of arbitrary

constants in the development of functions, and in the integra-

tion of differential equations, more than has yet been done.

1. To show the use of constants in the development of

functions, we will give the following investigation of Taylors

Theorem.

Thus, suppose the differential of any function of a; + A

may be represented by the form

dF{x + h) = ¥'(x + /i)dk,

when the differential is taken on the supposition that k alone

is variabla By taking the integrals of the members of the

equation, we have
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Y{x + h)=G+f^'{x + h)dh]

in which F (a? + A) is the integral of the exact differential

dF {x + /t), and C the arbitrary constant, while I ¥' (x + A) d/i

indicates that the integral of F' {x + h) dh is to be found, on

the supposition that A alone is regarded as variabla If we

determiae on the hypothesis that the integral I F' {x + h) dh

vanishes when h equals naught, since A = reduces F (»+ A)

to F {x), and I W {x + A) dh to naught, we shall have

F {x) =: 0. Hence, by substituting this value of C, the

equation F {x + h) = C + J F' {x + h)dh

is-reduced to F (a? + A) = F («) + / F' {x + h)dh;

noticing, that F (x) is not supposed to be unlimitedly great

Because F' {x + A) is a function of a; + A, it follows, from

what has been done, that for F' (x + h) we may put

W{x)+f'¥"{x + h)dh,

which reduces the preceding equation to

F (« + A) = F (») + y*F' (iB) dh +fdhfw {x + A) dh

= F (aj) + F' {x) A +y"F" {x + A) dK"
;

since / F' (x) dh becomes F' (x) h on account of the con-

stancy of F'(cb), and by using / (according to custom)

for //. Similarly, because F" (aj + A) may be represented

by F" {x) +fw" (a! + A) dh, we have
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y^F" {x + h) dh? =fdhf^"{x)dh +f'w" {x + h) dh',

and hence

¥{x + h) = -F{x)+ r{x)j + F"{x)^ +fw"{x + h)dh\

If n represents any positive integer, it is manifest that we -

shall in this way get

^{x+h) = ^{x) + Y'{x)\ + r'{x)^+W"{x)^+...

+ ^""'
^'"^ 1.2..'^.7>i-l) ^r^" ^^ + '"'^ '^^''

To find the values of F' (»), F" {x\ F'" (a;), &c., we resume

the proposed equation

dF(i! + A) = F'(a5 + A)(iA,

v v • rfF (a? + A) _, , ,,
which gives — '- = F' (a? + A),

for which we may evidently pat

for, since aj and A enter the function F (a; + 7t) in the same

manner, it is clear that the differential coefficient taken by
regarding A alone as variable, must be equal to its differen-

tial coefficient, taken by regarding x alone as variable.

Because F' (a;) enters the preceding equation, like the

arbitrary constant C in the equation

F (a; + A) = +fw {x + A) dh,

it is manifest that,we may determine F' {x) from the equation
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on the supposition that when A — 0, we must also have

f¥"{x + h)dh^O;

consequently, by putting A = 0, we get

Because the equation

F' (x + h)^ F' {x) +f'^" {x + A) dh

may be supposed to have been obtained from

d¥{x + h) =¥"{x + h)dh,

in the same way that

F{x + h) = ¥ (x) +fF'{x + h) dh

has been derived from

dF{x + h) = ¥'{x + A) dh,

it is clear that we shall (as before) get

dF (x)
Because •¥' (x) = , ii dx is constant, it is ciear that

CCvO

^ ^„,, dF'(x) .^ d'F{x) . , . , d'F{x)
for F '

(«) = ^ ^ we may write —,—'
; m which . \

-

is called the second differential coefficient of F (;b). It is evi-

dent that we shall in like manner get

and so on, for the third, fourth, &a, dlifereatial coeifioients.

Hence, we shall have

F{x + h) = F{x) + ^^- J + —̂ ^- ^ + —^-r- ui +'

&c., as in Taylor's Theorem, as required.
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It will be perceived that, in the preceding investigation,

we have virtually introduced an unlimitedly great number

of constants; since there must (essentially) be as many as

there are equations like

F (x+h) = C +y*F' {x+h) dh = 'S {x) +y*F' {x+h) dh,

Y{x+h) = F' (x) +y*F" {x + h) dh, and so on.

But since these constants all result from C = F (a;), or are

dependent on C, it is clear that the integral of

dE ix + h) = 'E'{x + h)dh

contains only one arbitrary constant. Indeed, it is manifest

that in

enter as constants ; whose values result from (jt (x), or depend

on X and the form of the function represented by (p.

It is hence evident, that in integrating any differential

equation there will be as many constants introduced as there

are integrations, which will be arbitrary when they are iade-

pendent of each other.

2. Supposing an equation between variables and constants

to be freed from fractions and radicals, and that its terms are

all brought into the first member of the equation, and ordered

accordmg to the ascending or descending powers of one or

more of the unknown letters, then, if the equation has a term

called the absolute term., which does not contain any variable,

by taking the differential of the equation, the absolute term

will disappear from the differential eqaatioa; and tLc pro-
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posed equation, sometimes called the primitive, is said to

have lost a constant ia the differential equation, sometimes

called the firM derivative of the proposed equation, by a

direct differentiation of the primitive ; but if the form of the

primitive is changed, so as to make the constant coefficient of

any other te^rm of the equation the absolute term of the

changed equation, its absolute term will, as before, disappear

from its differential equation, which may be called an indi-

rect derivative of the proposed equation, which may be said

to have resulted from an indirect differentiation of the pro-

posed equation. It is hence easy to perceive that there may
be as many direct and indirect differential equations obtained

from the given primitive, to free it from each of its constants

separately, as it contains constants.

Thus, if y + ace + 5 = represents the given equation, hav-

ing 5 for its absolute term, then, by a direct differentiation of

the equation, we get dy + adx = or -^ + a = for the

direct derivative of the proposed primitive, which does not

contain the absolute term &. By putting the proposed equa-

tion under the form a = 0, we have a for its abso-
X

late term ; then, taking the differentials of the members of

this, we have

^ y+_5 ^ d{y + h) xx-dx(;y+i) _ ^
X y?

'

or xdy — ydx — hdx = 0,

or its equivalent y -r^ +h = 0,

which is the indirect derivative of the proposed equation,

which is clearly the same result that the elimination of a

from
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y + ax + b = by -^ +a —

will give ; it is also clear tliat tlie elimination of -,— from the

differential equations

y_^ + J = and ^+a =''ax ax

will reproduce the proposed primitive. It is also manifest

that the derivative equations

-T-+ a=0 and y— -j^ +5=0
dx '' dx

are entirely distinct from each other ; the equivalent of the

first dy + adx =

being immediately integrable, -while the integral of the

equivalent of the second

; , , . , xdy — ydx hdx
ydx — xyd + box — (or — -z^^ 'Za —^)

becomes integrable after it is multiplied by — -^ , the factor

which is said to he requisite to the integrdbility of the in-

direct derivative, ydx — xdy + idx = 0, of the proposed

primitive.

If we take the equation y -\- hx + ca? ^ 0, it is evident

that a constant can not be eliminated from it by a single

direct differentiation, while the constants h and c can be

eliminated by indirect differentiations. For, by putting the

equation under the forms

^ + - + = and 1 +cx + l = Q,

and taking the differentials, we have
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and d- + cdx — or x -r- —(v— ex') — 0.
X dx ^ '

It is eyident that by eliminating ~ fi'om these equations, we

shall get the primitive equation y + Sa; + ca?" = 0, which

can not be found from the immediate integration of either of

the derived equations.

If, for another example, we take the equation

y — aa; + a° = ;

dxi
then, by differentiation, we have dy — adx =0 or -~- =a.

ctx

Substituting -^ for a, in the proposed equation, it becomes

xdy df
y dx ^ dx'

"'

dy
which is of the second degree in -^ , and of the first order of

differentials. Thus we perceive how differential coefficients

of the higher orders may sometimes be introduced, into differ-

ential equations, by eliminating the different powers of- a

constant from it, by means of the powers of a differential

coefficient ; but it is manifest from the methods of finding

multiple points in Section VII., that they may sometimes be

introduced by differentiating as in finding multiple points.

(See the examples at p. 191, &c.)

:3. We now propose to show how to reduce such integrals

Xcfe"', / Xc^a;", &c., vi and n being

positive integers, to simple integrals, expressed by the sign / .

Thus,
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J Xda^ =J dxj Xdx = J dxJ (Xrfaj ,+ xX.dx — Xxdx)

= X I X.dx — / X.xdx
;

whicli clearly results from integrating by parts (see p. 260).

Similarly,

/ Xda^ =j dxJ Xda^ = I {xdx I Xdx —dxj Xxdx)

= ~ {x'fxdx - Ixjxxdx + fXsiy'dx),

f*Xdx* =fdxj'xd3?

=^ fix'fxdx - 2xdx'fxxdx + dxfxx'dx)

= j^ {x'fxdx - Sx^fXxdx + Sxfxse'dx—fxa^dx),

and so on, to

fxdx" = __J^_ [a,»-i fxdx-^ X--' fXxdxJ 1.2.3...(w— 1) ^ J \ J

whose law of continuation is manifest (See Lacroix, voL II.,

p. 152.) If for

/ Xdx, I Xxdx, I Xa^dx, &c.,

in the preceding formula, we put

fxdx + G,fxxdx + G',fx«?dx + C", &a,

in which C, C, C", &c., are the arbitrary constants, they will

represent the complete integrals indicated by / Xdx" ; be-

cause there will be as maay arbitrary constants as there are



LIMITS TO INTEGRALS. 313

integrations, and they clearly enter the formula, as they

ought to do.

If the constants equal naught, it is clear that the pre-

ceding formula is equivalent to

provided y is regarded as independent of x in the integration,

and that the integral is taken from the value of x at the

commencement of the integral, to the value of x at the end

of it; for which last value (of x) we ought to put y, or y
must represent it. ,

Eemakks.—1. The preceding formula enables us to find

limits to the integrals indicated by

given in the investigation of Taylor's Theorem, at p. 306.

J< or X may represent ~-^ -, and A may be used for

x in the preceding formtda ; consequently, we shall have

A'^^''= 1.2.3. .'(n-l) A(y-^-)"-^-^^-

If we put y — A =; ys, or A = y (1 — s), we shall have

dh = — ydz, since y is independent of A ; consequently, we

shall get

A^^^" = - 1.2.3...'(n-l) A"-"-'^^.
supposing the integral to be taken from 3=:1 orA = Oto
s = or y = A. If the limits of the integral are interchanged,

it is evident that we shall have

/"'X6?A"= -— -. fXy-s'^-'ds.J 1.2.3 {n — \) J "

If M and m are the greatest and least values of X (re-

14
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garded as having tlie same sign and as finite), in tlie interval

from a; to a; + A, then we shall have

such that TTi-w-- and r-^rP^ are its greater and
1.2.3. . . . «. 1.2.3 . . . .n

less limits ; noticing, that these limits are clearly the limits

of the errors committed by rejecting

J 1.2.3 (?i — 1) •'

(See Lacroix, vol. ILL, p. 398.)

2. It is easy to find the integrals indicated by / Xdas", in

such a way that they shall be freed from / , the sign of

integration. Thus, since

fxda? =fdxfxdx
/•

, /^ dX x' cPX x^ , \

(see Bemouilli's series at p. 261), and by disregarding the

arbitrary constants (for the present), we shall, by integrating

by parts, get / Xdoe^ =

1.2 dx 1.2.3
"^

dx' 1.2.3.4 da^ 1.2.3.4.5
'^'

From this result, we, in like manner, get

B= dX 2a?
fxdx^=fdxfxdx^=fdx(x^^-f^^^+,i.o.) ;

which, integrated by parts, as before, gives

r- _ T '^ dX 3a^ d^X 6x^

J ^"^^ - ^ 12:3 " dx I.2.I5.4 + d^ 1:2X4.5
~' *°-
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Proceeding in this way, and suppljang the arbitrary con-

stants, it is easy to perceive that we shall have

f Xdx" = X
1.2.... n dx 1.2....{n + l)

^ 1-2 _^ 1.2.3
'^'da? 1.2....(»i+2) da^ 1.2. . . . (n, + 3) *"

+ Ccc"-' + CV-= + C'V-= + + C-'a^,

C, C, &c., being the arbitrary constants. (See Lacroix, vol.

II., pp. 154 and 155.)

Being now prepared, we wUl give a short section on the

Calculus of Variations.



SECTION n.

FIRST PEINCIPLES OP THE CALCULUS OF VAEIATI0N3.

(1.) If V is an arbitrary variable, which depends on a con-

stant ; then, if in consequence of a change in the constant it

becomes V, the difference V — V, represented by (JV, is

called the variation of Y, which is expressed by writing (J,

called the characteristic of variations, before or to the left

of V. If <^ (V) represents any function of V, and the alge-

braic sum of all the changes in the value of ^ (V) that result

from the separate variation V—V, represented by dV, of each

V in ^ (V) is taken, it will represent what is called the variation

of (ji (V) ; which, as before, is expressed by writing the char-

acteristic 6 before or to the left of the function; so that

6<l) (V) stands for the variation of the function (V).

(2.) From a comparison of the preceding definitions with

those of a differential of a variable and a function of it [see

(4) at p. 2], it is'easy to perceive that we shall have

^CV) = ^ffl^V;

j^- being the differential coefficient, regarding V as being

the independent variable. Hence we shall have

d<p (V) _ d<t> (V)

6Y ~ dV '

which shows that the variational and differential coefficients
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of afunction, with reference to the same variable, are equal

to each, other.

(3.) Since from (1.) V = V + (5V, we have, from Taylor's

Theorem,

./.(V) = ^(V + <JY) = <A(Y) + ^-^ SSf +, &c.
;

which, by retaining only the term that contains the simple

power of fJV, becomes

which clearly shows that ^ (Y') must be of a different form

from ^ (V), since <5V results from the change of a constant

contained in V.

Hence, if we represent the proper form of the first m.em-

ber of the equation by i/" (V'), we shall get

which gives V (V) - (V) = ^1^ c5V.

Since —^^^ (5V is, according to what has been shown, equal

to d 1^ (V), we shall hence get

V'(T')-<^(V) = d^(Y).

By taking the differentials of the members of this equation,

we have d^^ (V) -.d<l>(Y) = dS<p (V)
;

or since d^ (V) is a change of the form d<f> (V), we shall

have # (T') - d<l, (V) =^ rf# (V),

and thence dS^ (V) = 6d<j> (V)

;

and with equal facility we get

d"6^{Y) = 6d"4>{Y),
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n being a positive integer. Hence, in

f^»d0 (V) = dd''<p (V),

or in any expression to which d" and 6 are prefixed, we

may clearly interchange d and d, the characteristics of differ-

entials and variations, without affecting the value of the

result ; noticing, that this is usually considered as being the

fundamental principle of the Calculus of Variations.

On account of the importance of what has been done, in

what is to follow, we propose to illustrate it geometrically.

Thus, if the line OC is taken for the line of the abscissas,

on which the positive values of V are estimated from the

origin 0, toward the right; then ab, being drawn as an

ordinate to the curve he, representing the value of <p (V),

which corresponds to Oa = V, by changing Ore or V into

OA or V, and drawing AB parallel to a& to represent the

changed value of a5 = <^ (V) as an ordinate ip (V), in the

changed curve BD, we shall have V (Y') = i> (V), the varia-

tion of ab represented by AB — ab in the figure.

Similarly, Oa and OC representing other values of.V and

V, we shall have CD — cd for the representative of the cor-

responding value of ip (V) — <p (V), which may be regarded

as consecutive to the preceding value.
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Hence, we shall have

(GD -cd)- (AB - ab) = (CD - AB) - {cd - ah)
;

the first member of this equation, from the definitions at

page 2, being the difierential of

(AB - ah) =W -^Y=6^ (Y),

since (AB — ah) is on the same curves with its consecutive

value (CD — cd) ; while {cd— ab) in the second member of

the equation has (CD — AB) for its consecutive value, which

is taken in the curve BD and not in the curve he ; and of

course, since {cd — ah) =^ d<p (V), we shall have

(CD - AB) - {cd - ah)

expressed by (Jc?<^(V"). Hence, from what has been done,

we shall have dicp (Y) = 6d4> (V) ; which agrees with what

has been shown, firom other considerations.

Again, since Oa = V, and ac = dV, and cO = <J (V + dV),

we shall have 00 =Y+ dV+ S(y+dV);

also, from Oa = V, and aA = (5V,

together with J^O = d(y + 6Y),

we have OC = V + (JV + d{Y + <5V).

Hence, from equating these values of OC, we have

Y+dV+ 6{Y+ dY) = Y+ <JY+ d{Y+ 6Y),

which is easily reduced to SdY = dSY.

If AB and CD coincide, in direction, with ah and cd, or

if A falls on a and C on c, it is clear that the equation

6dY = dW will not exist.

(4.) There is an analogous principle,' with reference to the

signs of integration and variation, which we will now pro-

ceed to notice.
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Thus, if we put tte integral indicated by / u equal to V,

by taking tbe differential we sball have u = dV ; whose

variation gives

6u = 6dV = (by interchanging rf and d) ddY,

whose integral gives

J'du = (JV = sj'xi.

In like manner, by representing the nth integral / u by V,

and taking the ?ith differentials of these equals, we shall

have u = d"Y ; whose variation is

6u = 6d''6Y = d"6Y,

whose nth integral gives

/n /*n

Su = dY =
6J

u.

Hence, if the characters / and 6 are prefixed to any ex-

pression, tliey may he interchanged without affecting its vali^.

ip.) If t in any calculation represents the independent varia-

ble, then, since dSt = 6dt, and that dt is constant, we shall have

6dt — 0, since 6t is invariable ; consequently, from

dSt — Sdt=Q we have d6t = 0,

whose integral is 6t = const

Hence, the variation of the independent variable is con-

stant, or invariable.

(6.) To illustrate what has been done, and to show the

nature of variations more fiilly, we wiU take tbe following

EXAMPLES.

1. To find the variations of y, aj~», wy, and -

.
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By differentiating and using 3 for d (see p. 316), we readily

get

TO 2-1, p _?-i . . , . 1 xdi/ —ydx
-y" ^]/,--^«> ' '*», y3ie + x6ij, and -^-5-^-,

for the variations.

2. Given t — ~— and s = S-^ i
to find tlie variations of

ay ax

t and s, when c^y is regarded as constant.

Differentiating, and using 6 for d, we get

. _ Sydx + y3dx _ dydx + ycZfe^
dy

~
dy '

and
^^^6ydydx-yfiyd6x^

dx^

3. Given rfw = ?n.cte + m'd-x + M.(^y + w'c^^y + <pd?s, to

find the variation of u.

This is clearly effected by changing either d in the several

terms into (J, which gives

Su = rnSx + m'dSx + ntJy + w'cSc^y + pdSdz :=

(agreeably to what has been done)

mSx + m'dSx + nSy + w'c^dy +^(f-(J3,

as required. This is the same as to change the last d into 6.

4. To free the variations under the sign / , in the integrals

/ p^dx —
J
pd6x, and / qSdhj = / qcPSy,

from the sign d, of differentiation.

Integrating by parts, these expressions are readily reduced

to / jpddx = pdx — / dpSx,

and / q(^6y =_qddy — / dqdSy = qd6y — dqSy + / d^Sy,

as required.

14*
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5. To find the variation of the integral / Vde'^+ di/,

which indicates the length, or rectification, of an indefinite

arc of a plane curve, or line, when referred to rectangular

co-ordinates ; noticing, that such an integral is sometimes

called an indefinite or unlimited integral.

By taking the variation, regarding both dx and dy as

variable, and interchanging the signs of integration and

variation, we have

6J Vdx" + dy^ =J& Vdj? + df

^ fi -^_-_= 6dx + _t=. 6dy)
'' ^ VdaP + df S/d3? + dy"- I

(by interchanging (5 and d, and integrating by parts)

= C--M=d6x + /•—^ ^^y
J Vdx' + dy^ J Vdx'-vdf

= —— - ox -h
--— "

=r (Jy —
Vdx" + d'/ Vdd^ + dy"-

fd—t^=6x- fd -jL=.6y.
•^ Vdx' + dy^ J Vdaf + dy^

It will be perceived that the preceding integral consists of

two sorts of terms : one of which, that clearly relates to the

limits of the integral, is freed from the sign / ; while the

other terms are under / ,
or their integrals are to be taken.

If x', y', and x", y", are the co-ordinates of the first and

last extremities of the integral, then, the integral taken be-

tween the preceding limits, becomes
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r^"<y" , dx" , „ dij"
6 / Vd£- + dv"- 7=- ^ai"+ ^ dy"

- (-7=^= ^-' + -=^t=- 6y']
Wdx'" + dy'^ Vdx'-' + dy"' ^ I

_ fd—M=Sx-fd-jL=6^.
J Vdx^ + d/ J Vda?+df

If the extremities of the integral are fixed points ; then,

it is evident that 6x", Sy'\ dx', <Jy', will each equal naught,

and the integral will be reduced to

/I", V"

^
Vdx''+ dy' =

-fd Jl^ 6x-fd-=^=^Sy.
'' Vdx^ + dy^ -^ Vdx^ + dy^

H the extremities of the integral are always on given lines,

then 6x", 6y'\ will be connected by the equation of the line

at the end of the integral, while Sx\ 6y\ will be connected by

the equation of the line at its first extremity.

If the integz'al is to be exact or freed from the sign / , so

as to leave ^x and dy arbitrary, then, it is clear that we
must have the separate equations

/•^ t==fo = and fd-^^6y=0,
'' Vdx' + dy'' '' Vda? + df

•vcidL b( cause Sx and 6y must be arbitrary, these equations

mus< l.'e satisfied by assuming

^_^^___ = and d-Ji= = 0,
IS). a/ 7 t . 7 tl

'

Vdx' + df' Vdx- + df
wh'/.o integrals give

— ' = const, and — ^ = const
Vdx- + dy^ Vda? + dy^
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consequently, eliminating Vdtr + dy^ from these equations,

we have -—:= a =^ const., or dy = adx,

whose integral gives y=:^ax + b, the equation of a straight

line, whose constants are a and b. Hence, the variation of

the proposed integral being exact and its limits fixed points,

it is evidently reduced to naught, or

/x", y"

Vda^ + dy^ = 0.
X', y'

It is also manifest, that the straight line represented by

y=zax^h, makes P ' "
^clx' + dy",

a minimum ; such, that its value can easily be found from

the co-ordinates x', y', and as", y", of the fixed points at the

extremities of the integral. For by putting x' and y' in

y^^ax + i we have y' — ax' + b and by putting x" and y"

for X and y my = ax + b we also have y" = ax" + b ; con-

sequently, the solution of the equations

y" = cao' + b and y" = ax" + b,

will give the values of a and b, and thence the required

straight line can be drawn.

/I", y"

Vda^ + dy^

to be exact, and to be put equal to naught, we shall, as be-

f'~rr, have y = ax + h, the equation of the straight line,

together with the equation

^- -VV + -=M=dy"^ 0,
Vdso"^ + dy"' VH"" -h dy
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which results from the variations at the limits of the pro-

posed integral.

If the limiting curves at the extremities of the integral

are independent of each other, then it is clear that the pre-

ceding equation reduces to the two separate equations

dx"6x" + dy"6y" = and dx'Sx' + dy'6ij' = 0,

or their equivalents

dy".^y"-._^ . dy'6y'

noticing, that Sx'\ 6y", and Sx', 8y\ are supposed to belong to

the limiting lines, while dx" , dy", and dx', dy', belong to the

extremities of the straight line y = ax + l>. Hence, from the

dv'
equation of the straight line we have -^ = a, where it meets

the first limiting line, wliich reduces

^'^' + 1 = to ^=-i
dx' 6x' Sx' a

'

which shows that the straight line, from well-known princi-

ples, must cut the first limiting line perpendicularly ; and, in

like manner, from

y = ax + h and ^^- + 1 = 0,

it may be shown that the right line must also cut the second

limiting line perpendicularly.

Supposing the co-ordinates of either extremity of the in-

tegral, as x' and y' are given ; then since 6x'^= and 3y'= 0,

the preceding equations will be reduced to

, , dy" 6y" _y^ax+b and ^^ + 1 = 0;

consequently, the straight line must be drawn from the
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point whose co-ordinates are x' and y\ perpendicular to the

second limiting line. Hence, when the limiting lines are

straight and in the same plane, they must be parallel ; for,

otherwise, the minimum integral will evidently be impos-

sible.

Remakes.—1. "We have dwelt at some length on this

example, because of its simplicity and great use in showing

how to find the variations of indefinite integrals, preparatory

to the determination of the forms of those that, between

given limits, admit of maxima or minima values.

2. If the limiting lines are not independent of each other,

then the equation, which expresses their dependence, must

be noticed ; and thence the solution may be obtained.

3. If our object had been merely to find the nature of the

integral in 5, it is easy to perceive that / ^da^ + dy^ might

have been written in the form

/^l)'>'^.
and the variation taken by regarding y as a function of x,

supposing dx to be constant, or x to be the independent

variable, which would have led to y:=ax + b, the equation

of a straight line, as at p. 324 ; but this process would not

have indicated the manner in which the line must cut its

limiting hnes, as by the preceding method.

(7.) "We will now proceed, according to what is sometimes

regarded as the particular object of the method of variations,

to consider the maxima and minima of Indefinite In-

tegrals.

1. Let fY = II represent the integral of any differential

;
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such, that the form of / V in terms of its variables is to be

found, so as to satisfy certain maxima or minima conditions
;

then, since it is supposed that the integral can not be ex-

pressed except by the sign / , it may be regarded as being

of an indefinite form.

2. If u receives a small variation or change of form, in

consequence of small changes in the relations of its variables

;

then, from the generalization of Taylor's Theorem, as at

pp. 21 to 23, by using 6 for d, it is clear that u will become

w + <Jw+^2+j^+, &c.;

such, that 6u contains the simple powers of the variations of

the variables in u, S^u contains two dimensions of the same

variations, S^u, contains three of their dimensions, and so on.

(See Lacroix, vol. II., p. 788.)

Hence (see p. 94, &c.), by a process of reasoning analogous

to that used when treating of the maxima and minima of

definite forms, it evidently follows that, in order to find the

maxima and minima, we must assume

du = 6 I Y — I
6Y (between proper limits) =

;

that is, the coefficient of each arbitrary variation under the

sign / must be put equal to naught ; noticing, that the forms

of u, which make <5^m negative, correspond to maxima, and

those which make.it positive, give minima.

3. By calculating / (5V the integral of the variation of V,

it will be found (as in Ex. 5, at p. 322 ) to consist of two

parts ; one of which, containing in its most general form (or
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when tte variables in « or / V are regarded as being inde-

pendent of eacb other) as many terms as there are indepen-

dent variables under the sign / , each of these terms having

the variation of one of the independent variables for a factor,

while the remaining part is freed from / , and results from

taking the integral of the variation of the proposed integral

from its first to its second limit Because the terms under

the sign / are clearly independent of those without it, and

of each other, it is manifest that to reduce / dV to naught,

we must put the coefficient of each variation under / equal

to naught. Hence we shall have as many equations as / V
or u is conceived to contain independent variables, which, by

the required integrations, as in 5, will be reduced to one less

in number than before, or than / V has been supposed to

contain independent variables, which is evident from the

consideration that the form of / V will be determined.

As to the terms of / <5V, that are freed from / , they must

be reduced to naught, and treated in ways very analogous to

those used in 5, at p. 322, &c.

Hence, the manner of satisfying / <JV = 0, becomes too

evident to require any further explanation.

EXAMPLES.

1. Supposing a heavy body to descend from one point to

another, not in the same vertical line, it is proposed to find
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the nature of the line in which the body may descend in the

least time.

Let X and y represent the rectangular co-ordinates of the

place of the body, at any time t of its motion from the

commencement ; then, if \/d^ + (kf = ds = the differential

of the described "arc of the sought curve, and v the velocity

acquired by the body in its descent, and dt the differential

of the time, we shall, from well-known principles of me-

ds
chanics, have dt^= — ; or, by taking the integral from the

time of the body's leaving the highest point to its arrival at

the lowest, we shall have ^ = / —
, which is to be

a minimum.

If ^ ^ 32|- feet, and y the vertical descent in the time t
;

then (from p. 154 of Young's "Mechanics," or any of the

common works on Mechanics), we shall have v = /2^y ; and

shall thence get

=/
Vdx^+dy-

4/2^

which must be a minimum; or, since ^g is constant, it is

evident that when < is a minimum,

is also a minimum.

It is hence manifest that for / V we must here take

J y ^ ; and that x and y may be regarded as being

independent of each other.

Since (from what has been shown) we have
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,yy'^±^ ^y,/dx" + dif'

y

we shall get, by taking tlie variations, V2g 6t = 0, because

^ is to be a minimum, or its variation equal to naught

;

which, gives

Hence, integrating this equation by parts, and using C for

the arbitrary constant, we shall have

ds^y ds\/y ^ J dsi^y

If x', y', and x", y", represent the co-ordinates of the body

at its highest and lowest points, we shall, from the elimination

of C from the equation, have

WHY da" vy" ^ U' Vy' d^Vy' ^

'

This equation may be satisfied by putting the coefficient of/dx
eqnal to naught, or d -,—— = 0, whose

dx 1
integral may be represented by -=—— = —- = the arbitr£try

as y^ \fCi

constant ; and because this equation is suf&cient to determine

the curve described by the body, we may reject
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f('^div^ + lw)^V'
or assume 6y = 0; and because the first and last points of

the curve described by the body in its descent are given, we
shall have

dx' = 0, t5y' = 0, fo" = 0, 6f/'-0-

consequently, the above variational equation is fully satisfied.

To determine the curve described from the equation

dx 1
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The same can be shown from

which give

dx /y , dz fz— y ^ and ^ = 4/ -

;

ds 'a ds '^ a

S = /! = /-!ds ^ z ^ z '

a

-, adz — zdz 2 " .a dz
or OKB =

Vaz—s^ \'az — z^ 2 ^ az — ^
a= (? ^ as— s^ + arc rad ^ versin s

;

whose integral gives

(B= Vaz — s" + arc rad ^ and versin z,
it

which agrees with the well-known equation of the cycloid,

when the origin of the co-ordinates is at its vertex, and its

axis is that of z. (See p. 150.)

Eemakks.—1st K the body is to move in a vertical plane

from a higher to a lower line or curve, in the shortest time,

then, when the lines are so placed that the solution is possi-

ble, it may be shown, as in example 5, at p. 322, that the

cycloid must cut the limiting lines perpendicularly : also, if

the body is to move from a point to a lower line, it must

move in a cycloid which cuts the line at right angles.

2d. "We may find the time of descent from the highest to

the lowest of the given points, as follows

:

Thus, by taking the differential of *° = 4as, we get

Isds = ^dz or ds = = dz 4/ — :

^z ' z

consequently, since

V = ^%gy = Vlg (a — s), or ds = dzy-
we shall have
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ds / a ds,j ds /a

by using — ia the right member, because z decreases when

t increases. It is easy to perceive that this equation is

equivalent to the form

dtz^ — d arc (rad - versin z\ -.—

.

T
If ^ represents the time of descent of the body from the

Li

highest to the lowest point, then, since the arc whose

radius = 1 and versin = 2 is tt = 3.14159, &c., = the semi-

circumference, whose rad = 1, and that the arc whose

versin = is also naught, by taking the integral of the pre-

ceding differential equation from the arc whose versin ^ 0,

we shall get -^ = tt y — , as required.

If s' is supposed to be unlimitedly small, the preceding

value of x' = ^az' — s'^ -\- arc (rad - versing'),

on account of the comparative smallness of s'^, and because

arc rad = -x and versin z' differs insensibly from its chord

s/az'i ™^y evidently be reduced to x' — 2Vaz' very nearly.

Now, if the arc of the cycloid corresponding to z' is represented

by «', the equation s' = ias becomes s'^ ~ 4az', whose square

root gives s'= 2Vaz' ; consequently, when z' is so small that

s'^ may be regarded as an infinitesimal in comparison to z',

we shall have x' — s' very nearly. Hence, because s'^ = 4:az'

gives 4a = —7 , we shall have 4a = —7- ; consequently (from

a well-known property of the circle), 4a equals the diameter

of a circle which has the same curvature as the cycloid at its

lowest point, or vertex.
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Because s' = 2 /as' is sensibly tlie same as a circular arc

whoseradias is 2a aad height s', it clearly follows, from what

has been shown, that the line of descent down the (infinitesi-

mal) circular arc height s' and rad — 2a, differs insensibly

from
2 =^''\^Yg-

From this equation, we have

^ ^9 ^9
which eqxials the time of an infinitesimal vibration of a

pendulum, whose length is 2a. Hence, if the vertical dis-

tance of any two points is denoted by a, it clearly follows

T /a
from ^ = " |/^ , that the least time in which it is possible

for a heavy body to passfrom the higher to the lower point,

equals the time of one vibration of the penduhcm whose

length is ^ , or half the time of one vibration of the pendu'

lum whose length is 2a.

3d. The question here treated of, is sometimes called the

Problem of the Brachystochrone, or the line of quickest

descent

2. Two points in a vertical plane are connected by a line

of uniform diameter and density, to find its nature when its

center of gravity is lowest

Let the line be referred to the axes of x and y in its own
plane; the axis of x being. horizontal and y vertical, and

directed downward.

Then, ds being the differential of the length of the line,

jds = const when taken throughout its entire length, will

be one of the conditions of the question ; and / yds = max.,
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when taken througli the entire length of the line, will be the

other condition, since this integral, divided by the length of

the line, expresses the descent of the center of gravity.

If we multiply the first condition by the constant a, and

add the product to the second condition, the two will clearly,

since the first is constant, be reduced to the single condition,

a I ds + I yds — I (a + y) ds = max.

By taking the variation, we have

dfia + y) ds =y"(5 {a + y) ds

^f[dsSy + (a + y)^ddw + {a + y)^ Sdy^

(a + 2/) ^ d^^ +J [dsdy + {a + y) ddy'],

which integrated by parts gives

(^ + y)-£ ''«' + (« + y)^'^y -j^ ^'^ + 2/) ^ ^^

. -f[^ ds + d(a + y) ^) Sy^.Q = 0,

C being the constant.

Since the extremities of the integral are given points, the

part of the integral without the sign Tvanishes, and the

constant = ; also, since 6x and <5y, under the sign / ,
are

arbitrary and independent of each other, we must have

cz{(a + 2/)^| =0, and - ds + d[{a + y)^] = 0.

The integral of the first of these gives

(a + y) ^ = 5 = const.,

which gives
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(a + yf d3? = V {,M + dy\ or [(a + y)= - &=] ^35= = ¥dy\

hdy
or dx =

and by putting the second equation, in the form

^ (a + y)^ = <^^

and integrating, we have

C being the arbitrary constant.

If ^ = when « = 0, we have
ds

since = 0; and thence 2ady + 2ydy = 9i8ds,

whose integral gives 2ay + j^ = «^,

which needs no correction, supposing s and y to commence

together and to be reckoned upward ; noticing, that the origin

of the co-ordinates is clearly at the vertex, since -^ = at

the origin. The preceding equation is the common catenary,

the well-known curve, into which a uniform chain of unlim-

itedly small, short links, when suspended from its extreme

points, will form itself; and it is also well known that the

equation dx = —
,

previously found, is another form of the equation of the

same curve.

Eemarks.—Because the length of the curve in this ques-

tion is given in addition to the maximum condition, the

question is said to fall under the class of what are called

isoperimetrical questions.
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3. To find the relation between x and y, when the integral

jj^r-^ I
taken between proper limits, is a minimum.

"which, integrated by parts, becomes

in which di? is put for d:^ + dy^, and is the arbitrary

constant.

Because the equation must be satisfied so as to leave 6y

and 6x under the sign / arbitrary, we must put their coeffi-

cients equal to naught, and shall thence get

consequently, the preceding variation reduces to

Bydy^dx^ + y<^f g^ _ 2ydfdx
^^^ q ^ q

CvS as

If the extremities of the integral are given points, we have

dy= 0, <JiB = 0, and thence = 0; consequently, the con-

ditions of the question are all satisfied.

To find the relation of x and y, it wiU clearly be sufficient

to take the integral of

d Ti — 0, which gives j ^
= C = const.,

15
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and to reject the other equation, or to put the dy under the

sign / , equal to naught.

The equation —fr- = C', gives

<^-^h'ih
dx' _C'(l+y)'

dxdy^ _p*

by putting '£ = P-

From y = ^' C^ + P'f = C' (>-»+ 2j>-' +p),

we get dy = C (— Zp-" — 2/>-' + 1) dp,

and thence dx = — becomes
P

<& = C i-Zp-'dp-2p-^dp + ^V
whose integral gives

in which C" is the arbitrary constant, and hXp denotes the

hyperbolic logarithm oi p.

Supposing ^ to be eliminated from

then, by putting in the resulting equation, the values of

X and y at the given points at the extremities ofthe integral,

we shall have two equations containing C and C" as un-

knowns, whose solutions will give the required values of the

constants, as required; consequently, the required relation

between x and y will be found.
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Instead of supposing the extremities of the integral to be

given, it will clearly be sufficient to use other conditions

;

such as will enable us to find the constants C and 0", and

thence to get the values of x and y that may correspond to

any assumed value of ^.

Thus, if the limits of the variation of the integral are not

given points ; then, if the variation

is taken from the values of x and y represented by x' and y'

to the values represented by x" and y", we shall have

Zy"dy"Hx"^^-y"dy"' _ 2y"dy"'dx"

ds"*'
^

ds"*

iZy'dy'Hx'^ + y'dy'' ly'dy'Hx' \ _

If the co-ordinates at the extremities of the integral are

independent of each other, it is manifest that this equation

will be divided into the equations

(a +!:),,._«^ = o,

which representing -j- by p, are equivalent to

6x" " 3 +y (&' " 3 +^'='

Since

we may to these join the equations
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„_G'(i +p'y , .
C (1 +j?T

y - ^^ , y - ys

and, representing tlie equations of the limiting curves by

y"=<t>{x") and y' = i>{x'),

we shall have ^ = (^' {x") and -rn = i> {'«'),

which reduce the preceding equations to

^'(^") = 3TF^
and ^'(.^0=3^.

Hence, -we have eight equations, which will enable us to

find the eight unknowns, x", y", p", a;', y', p', C, and C"

;

consequently, the points in which the curve represented by

the equations

intersects the limiting curves y" =
<f)' {x") and y = V (*0)

may be supposed to have been found ; and since the con-

stants C and C" may be supposed to have been found, it

clearly follows that the curve represented by

may be supposed to be drawn, as required, between its limit-

ing curves.

If for either limiting curve, as that whose co-ordinates are

x' and y', we take the point whose co-ordinates are x' and y',

then it is easy to perceive that our eight equations will be
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reduced to six, wMcli will enable us to find tlie six un-

knowns, a;", y", p'\ p', C, and C", &c., as before.

Remarks.—1. It is easy to perceive, from tbe solution of

Ex. 19, at p. 113^ that / -f^-~ri, represents the resistance of

a solid of revolution around the axis of x, moving in a fluid

of uniform density, in the direction of the axis of a? with its

smaller end foremost, whose nature we have determined, so

as to make the resistance a minimum.

2. The example is substantially the same as that solved by

Newton, at p. 120, vol. II., of his "Principia." If, in the

preceding equations, we put ^ = 1, and y' for the corre-

sponding value of y and » = 0, then

2/'=4C', or C'=|, 0=C" + ^C', or 0"=-^.

From the substitution of the values of the constants, the

equations become

which clearly reduce to y' and at the origin of the co-ordi-

nates, since h. 1. 1 = 0. If we put p = 0.9, we readily get

y = 1.123 2/' and x = 0.130 y' very nearly, and p = 0.8

gives y = 1.313 y' and x = 0.354 y' nearly, and so on.

Hence, when the extremities of the integral are fixed

points, , as at p. 337, we easily perceive how the equation

which connects y and x may be represented by linear de-

scription.

Thus, by putting y' = 1, and assuming ox and oy for the

positive directions of the rectangular co-ordinates, having o

for their origin, we set 1 from o on the axis of y for a point
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in the curve, and then set 0.130 from o on the axis of x,

through which (point) we erect the perpendicular 1.123 to

the axis of x for the corresponding value of y, and then

having set 0.354 for x' from o, as before, we draw the per-

pendicular through the point to the axis of x equal to 1.313

for the corresponding value of y, and so on to any required

extent; then, a curve drawn with a steady hand through

the points thus found will be such, that by revolving around

the axis of x it will generate a solid, which, moving in a fluid

from 83 toward o, it will meet with less resistance than any

other solid, whose end diameters and height are the same.

It is manifest, that the preceding construction is substantially

the same as that of Newton,

4. To find the curve surface, whose area between given

limits is a minimum.

Agreeably to what is shown at p. 302, the double integral

when taken between the proposed limits, may be taken to

represent the required surface.

By taking the integral ofthe variation of the surface, we have
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by using jp and £ for -5- and -7-, and because z is regarded as

being a function of x and y, considered as being independent

variables. Since

. .dz dSz , . dSz
op = 6 — = ^r- and 00- = -7-dx ax ^ dy

on account of the constancy of dx and dy ; tben, if

and ' Q

;

^' ^ff^^y -£ '^^ +/7Q'^^ ^ %•

we shall have

'^^dx+ffqdx'^

Hence, integrating by parts, we shall have

Ss =
I YdySz -\-

I
QdxSz —// t— Szdxdy —jj -5— Szdxdy

;

and it is clear that the part of this integral which is freed

from one of the signs of integration, since it relates to the

fixed limits, must be reduced to naught, since 6z at the

limits = 0. Hence, we shall have.

^^ =
~fJi:x ^^^y ~fJ% ^^'^y'

which must equal naught, since s is to be a minimum ; con-

sequently, since rfs, under the double sign of integration, is

indeterminate or arbitrary, its factor -^—I" T~ ' i^^^der the

double sign of integration, must be reduced to naught, which

gives
-J
—(- -^ = 0. By restoring the values of P and Q,

and taking the indicated differential coefficients, the preceding

equation will be reduced to its equivalent,
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consequently, if we put

il^r, ^ = f = s, and ^ = t,

dx ^ doi dy dy

we stall have

(1 + f)r-^jpq« + {^+f)t==^,

for the equation of the partial differential coefficients of the

sought surface, whose integral will, of course, be the surface.

Eemaeks.—1. This example has been taken from p. 753,

vol. II., of Lacroix's work, where it is' remarked, in a foot

note, that the equation

— + ^=0 -ves ^=_^.
dx dy ° dx dy^

which is the condition of the immediate integrability of

Vdy — Q,dx] consequently, it is concluded that on the mini-

mum surface, ,,^
' ~—-^r- is an exact differential, as well

as ds ^=pdx + qdy. Thus, all plane surfaces will be found

to satisfy these conditions ; since

and of course the preceding conditions are reduced to

naught; consequently, since the differentials of constants

equal naught, it is manifest that the preceding differentials

may be regarded as having constants for their exact in-

tegrals.

If these tests are applied to the sur&ce whose equation is

az = a;?/, they will be found to give

ds y . dz X
P = -j- = ~ and q = ^- = -^ ax a ^ dy a

which reduce them to
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ycly — xdx , , _ ydx + ^di/ _ d {xy)
_

|/ (a^ + iB- + y^)
"^

'

a' a '

consequently, since the first of these is not an exact differen

tial, it follows that the proposed surface does not belong to

the class of mimmum surfaces. Nevertheless, if x and y are

very small in comparison to a, it is clealr that -jj-^-—^ ^:

does not sensibly differ from ^—^
• , which is an exact

differential; consequently, if a is very great, the surface

as = xy for finite values of x and y, will not greatly differ

from a minimum surface.

2. Lacroix, at pages 806 and 875 of the volume cited,

shows how to find the solid which, with a given capacity,

contains the least surface.

Thus, sinceJjsdxdy and Jji/ (1 +p^ + <f) dxdy

express the capacity and surface, and that the first is given,

it is manifest if C stands for a constant, that when the sur-

face is a minimum,

f/Qzdxdy +ffvO- +f + f) dxdy ^

/f\_Gz+V{l+p' + q')\dxdy

will also be a minimum. Hence, using P and Q to stand

for the same things as before, then taking x and y for the

independent variables, we in like manner get the equation

0-^-^ =
ax ay

or its equivalent,

C (1 +y + q'f -\_{l+q^)r- 2pqs + (1 +/) f\ = 0,

for the equation of partial differential coefficients of the re-

15* "
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quired body, whose integral will, of course, represent the

body.

Lacroix remarks, that the sphere and cylinder whose

equations are represented by

z'+f + x' = a?, and z^ + y- = a'\

will satisfy the preceding equations.

Thus, in the sphere ^ = , and ^ = — -

,

which give 4/(1 -{ p' + q") — -,

and thence P and Q equal and — - ; which reduce

2
the first of the preceding equations to C H— = 0, and in the

cylinder the same equation is reduced to C H—, =: 0.

5. To draw the shortest line possible from one point to

another, on any proposed surface.

Let X, y, z, represent the rectangular co-ordinates of any

point of the sought line ; then, because the point is on a

surface, s may be considered as being — a function of x and

y regarded as being independent variables, and we shall have

. dz . dz ^

Tx ^^ dy y^ ^ + ^y-

From what is done at p. 240, we evidently have

ds = ^/{(Ij? + dy^ + dz^)

for the differential of the line, and

s = f^{da? + dy^ -f d^

will represent the line, and its variation becomes
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6s = sf^ida? + d(^ + ds") ^fd ^(da? + df + ds")

C being the constant. Taking tlie integral from x', y\ z\ to

x", y", s", tke constant mil be removed, and we stall have

Supposing tbe extremities of the integral to be fixed

points, the part of the integral without the sign / will

vanish; and since 6s = 0, we must have

since 6z = pdx + qSy.

Because dx and cJy, under the sign / , are arbitrary, their

factors must be put equal to naught, which give

,dx ^dz . , ,dy . dz .
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which are the equations of the minimum line, and are the

same as those given by Lacroix, at p. 270 of the volame

before cited.

Thus, to draw the shortest line possible from one point to

another on the surface of a sphere whose equation is

7-2 = ar* + jr" + s^

Here dz — dx — - dy,
z z

, . . <» 1 y
which gives ^ = and q = ,

which reduce the preceding equations of the minimum to

whose integrals may be expressed by

zdx + xdz = Ads, and zdy — ydz = 'Eds.

Multiplying the first of these by B and the second by A, we

readily get Bi - = A^ -

;

whose integral gives

t^ + C - B - = 0, or Ay - Ba; + Cs = ;

z z

which is the equation of a plane passing through the center

of the sphere, and of course the shorter of the arcs of a

great circle which passes from one of the given points to the

other, is the required minimum distance.

Eemakk.—Besides the minimuni thus determined, which

may be called the absolute minimum on the spheric surface,

there is what may be called the relative maximum. For the

lesser arc of the great circle, between the points being a

minimum, the remaining arc of the same great circle will be
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the greatest distance on the surface between the points ; sup-

posing the distance to be measured in planes passing through

the points.

(8.) We may now proceed to show how to distinguish be-

tween the maxima and minima in examples, but shall refer

for this to Art. 876, p. 807, of the " Calcul Integral" of

Lacroix; noticing, that the maxima and minima can often

be distinguished from each other by the nature of the case,

as in the examples which have been given.

As we do not profess, in what has been done, to have

given any thing more than the first principles of the Calculus

of Variations, we must, for more ample details, refer to

larger works :. such as "Woodhouse's " Treatise on the Calcu-

lus of Variations," and the " Calcul Integral" of Lacroix,

at p. 721. (See p. 614, Appendix.)



SECTION III.

INTEGRATION" OF RATIONAL FUNCTIONS OF SINGLE VARIA-

BLES, MULTIPLIED BY TflE DIFFERENTIAL OF THE VARI-

ABLE.

(1.) It is clear that sucli differentials must be of one of

the two forms

(Aa;" + B^ + Gxf + &c.) dx,

Aa;" -f Bx" + Gx' + &c. ,

^"""^ AV+ BV-F CV'-J- &c. *'

in which tne indices of x are supposed to be positive in-

tegers. Supposing the terms of these expressions to be

arranged according to the descending or ascending powers

of X, we may suppose the index of the highest power of a; in

the numerator of the fractional form to be less than the

index of the highest power of x in the denominator ; for if

the index of x in the numerator is equal to or greater than

in the denominator, it may be made less by arranging the

terms of the numerator and denominator according to the

descending powers of x, and then dividing the numerator by

the denominator, when the fractional form will be reduced

partly or wholly to the first of the preceding forms, accord-

ingly ks the numerator is not or is exactly divisible by the

denominator.

(2.) By proceeding as in (9.) at p. 266, we may clearly

suppose the integrals of all such differentials as the above to
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be found to any. degree of exactness that may be required
;

which is clear from the circumstance mentioned by Newton,

that they have the sums of the inscribed and circumscribed

rectangles for their less and greater limits.

(3.) If we have differentials of the preceding forms, in

which the indices of x are some of them positive fractions,

by reducing the indices to their least common denominator,

and representing unity divided by the least common denomi-

nator by - , and putting y = ajF , or x = y'', we shall have

dx = j?i/^~^d>/ ; consequently, putting y for x' and py''~^dy

for djc, the expressions will be changed into forms like to

those at first supposed ; and of course the integrals may be

found to any degree of exactness, as before.

It is evident, if the first differential has any negative ex-

ponents, that their integrals may be found in algebraic forms,

excepting when any of them happen to be — 1, when the

corresponding integral will be the hyperbolic logarithm of x

multiplied by the corresponding coefficient of a;
"

'
; and it is

clear, that if in the fractional differential any of the indices

of X are negative, they may be removed by multiplying the

numerator and denominator by x with the same index taken

with the positive sign, when it will follow, as before, that

the integral can be found to the same degree of exactness,

in the same manner as before.

(4.) It is manifest that the factor of dx, in the fractional

differential, can be conceived to have been obtained from the

addition of simpler fractions together, after having reduced

them to a common denominator ; consequently, the denomi-

nator wiU represent the common denominator of the frac-

tions whose sum equals the proposed jQraction. Hence, to
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find the component fractions, the first thing to be done is to

resolve the denominator of the given fraction into factors,

which can be done as follows.

Thus, by putting the proposed denominator equal to

naught, we shall have an algebraic equation, whose roots,

both real and imaginary (when the equal roots are included),

will equal the number of units in the greatest exponent of x
;

noticing, that the imaginary roots always enter the equation

in pairs of such forms, that the product of every two factors

which give these roots will be real, or jfreed from their

imaginary parts.

Hence, we rnay suppose the denominator of the proposed

fraction to consist of real, simple, and quadratic factors.

(See p. 440 of my Algebra, or most of the common works on

that science.)

(5.) Having resolved the denominator into its factors, and

taken any one of its unequal simple real factors for the de-

nominator of any one of the component fractions, then we

may assume a constant, to be found &om the principles of

identity of equations, for the numerator; since a? must be

of less dimensions in x in the numerator than in the de-

nominator of the fraction.

To find the numerators of single quadratic factors taken

for the denominators, they must generally consist of a con-

stant term, and another constant for a factor of the simple

power of X, observing that these constants are to be found,

as before, on the principles of identity of equations.

When the proposed denominator contains a real, simple, or

quadratic factor m times ; then, if the numerators of the

proposed fractions contain suitable dimensions in x, the

fraction to be assumed must contain the mih power of the
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simple, real, or quadratic factor, and may contain all the

lower powers of the same denominator for the denominators

of other fractions, down to the simple or first power inclu-

sive, provided x ha,s suitable dimensions in the numerators

of the proposed fractions ; noticing, if x does not enter the

numerator of the proposed fraction, that the fraction can not

admit of any further reduction.

(6.) To illustrate what has been done, take the following

simple

EXAMPLES.

2a5 5
1. To integrate the fraction -j ^ dx.

Putting the denominator equal to naught, we have the

quadratic equation o^ — 5a3 + 6 = ; whose solution gives

as = 2 or a? = 3, and of course « — 2 and x — Z are the

factors of the proposed denominator.

Hence, agreeably to what is shown, we assume the pro-

posed fraction equal to

A ^ B
aj — 2 X —V

and thence get the identical equation

2a;

-

5 _ A B _ (A + B) a; - 3A - 2B
V? — bx -^ ^~ x — 'l'^ x-%~ x^-5x -^ Q

'

which gives 2a;— 5 = (A -^ B) 'a; — 3A — 2B,

which must be an identical equation; consequently, fi-om

equating the coefficients of like powers of x in the members

of the equation, we get the equations A -f- B = 2 and

3A + 2B = 5, which give A = 1 and B — 1, and thence

the proposed differential is reduced to

2a; — 5 , dx dx
dx = s + "

a
x" — 5a; -f 6
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wHose integral is expressed by

/• 2a; —

5

, _ f dx f dx _
J x'-dx + e "^-J x-3^ J x-2

log(a!-3) + log(a!-2) + log C = log C (a; - 3) (a3-2),

log C being the arbitrary constant (see p. 255) ; by putting

^ 1 , r 2x-5 , , (a;- 3).(a5-2)
C = g, wehavey^-g^^e^ = log ^ ,

wbicli commences with. x.

2. Tomtegrate^^ and ^^^.
Because the denominator of the first of these differentials

consists of two equal factors, 1 + x and 1 + a;, we assume

X A B A + B + Ba;
+

(1 + xf {1 + xf^ l + x (1 + xf
'

which gives A = — B and B = 1

;

consequently, we

shall have

/xdx C dx r dx 1 1 /< , ^

Because x does not enter into the numerator of the differ-

ential ^^j

—

'—^ , we do not have any reduction like the pre-

ceding, and thence immediately get

dx 1A(1 + xf 2 (1 + xf

for the required integral

Remakk.—The reason for assuming

83 A B
+

+

(1 + a;)^
~

(1 + a?)^ ^ 1 + a;

'

becomes evident from dividing x by a; + 1, which gives

_^ = 1_-J_
a? + 1 1 + as'
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and thence we shall have

X 11
+

[l+xf {l + af 1+x'

agreeably to the above assumption ; and it is clear that a

similar reasoning will be applicable in all analogoas cases.

xdx
~+

a + 5aj + ex'

f

3. Integrate 2 / -—-yj — log C (1 + x"), and reduce

dx the expression to a proper form for inte-
{X - ef

gration, in order to get the true answer.

Thus, by putting x — e^=s or x:=e-'t--s, dx^=d3, the

form is

a + he + 6'(-* 2ce , ^
2? -H- log 0.3,

as requ.ired, C being the constant.

4. To integrate . V' 7
^^

, d..
^ x" — 2x' — x + 2

Here, because the factors of the denominator are evidently

X — 1, a; + 1, and x — % we assume

7;b-11. a. _B__ C
ar'— 2^-

—« + 2 *— 1 x + 1 » — 2'

from which, as heretofore, by the method of undetermiued

coefficients, we may easily find the values of A, B, and C

;

we will here, however, use a modification of the method,

which will often be preferable. Thus, to find A, we may

suppose a? — 1 to differ insensibly from naught, which reduces

the assumed equation to

l.r - 11 _ _A_
ar*— 2»'— » + 2 ^ x~—l'

on account of the comparative smallness of the other terms.
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Dividing the denominators of tliis hj x — 1, we have

7,r - 11 _

in which we must for x put 1, which gives A = 2. By put-

ting a? + 1 = an infinitesimal, we, in like manner, have

7a; -11 __B_
c^—2c^ — x+2~x+l'

whose denominators, divided hj x + 1, give

af' — 3^ + 2
'

in which we must for x put — 1, which gives B = — 3

and in much the same way we get C = 1. Hence

7a! — 11 , 2dx Bdx dx
ax = r -\-

a!= — 2»2 — a; + 2 a?- 1 a!+la! — 2'

whose integral gives

L ix-n
dx

a?— "id?— X + 2

= 2 log (a; — 1) — 3 log (a?-+ 1) + log (a; — 2) + log C

(x-llix - 2)
= ^"g^

(a; + l)^ •

Eemaek.—The preceding method is clearly the same as

to multiply by a? — 1, divide the numerator and denominator

in the first member by a? — 1, and put x — 1^0oraj = l

in the result, which will give the same value of A as before

;

and in like manner, by multiplying by a; + 1 and x — 2

successively, we get B and 0, the same as above.

6. To integrate -. -^r-. -: dx and 7^5 -^ dx.
(x — 2f (x — 5) (3 — xf

Assuming

8-x A B ' D
+ 7Z H« + Z -r, +{x-2f{x-o) (x-2f ' {x-2f^x~2^x-5'

and supposing a; — 2 to be an infinitesimal, we shall, on
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accoant of the comparative magnitudes of the terms, have

3—x _ A _

or, dividing tlie denominators of these hj {x— 2)', we have

^ = A, which, since a;— 2 = 0, by putting 2 for x, gives
OS —
A = — ^ . Hence, by subtracting

.{x-2f 3. {x-2f
from the members of the assumed fractions, we have

3-3! _J _ _ 2 J^
{x-2y{x-&)'^ 3(x-2f ~ 3 (x-2)^{x-5)

{x-2y^x-2^x--5'
consequently, proceeding with this in. the same way as

before, we shall have

^ "^ ""
3 5^^ °^ ^^^^^^ « = 2), B = ^.

2
Subtracting ^, ^ from the members of the preceding

equation, we get

2 1 2 1 2 1

3 (a;-2/(a!-5) 9{x-2f 9 {x-2){x-5)

^ D
X — 2 X — 5'

Hence, as before, we have

^=-|^ °' (since«. = 2)C=A;
2

consequently, subtracting —-- — from the preceding
A t [CG — A)

equation, we, as before, get
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_ 2 1 2 ^ _ 1 1

9 {x-2) (x — 5) ~. 27 (« — 2)
~ 27 a; - 5

'

whicli must equal the remaining fraction, and, of course.

Hence, from the substitution of the preceding values, the

integral becomes

r ^-^ ^ _ 1 2 1 ^ (x-2\lj

J (35-2/ («- 5) 6 {x^2f 9 aJ-2 ^ °^ ^ U-S^ "

In like manner, we have

(2 - xf _ 1 _B_ C
I/O „\2 T"

(3 - £»)»
~

(3 - !«)» ' {8—xf ' 3-x'

which gives B = — 2 and C = 1 ; consequently, we shall

have the integral

/:1^ * = 2(8^' - rri - '<« ° (' -^

6. To find the integral of
{x— ay

Here we assume

ar" A B C D
,<

"'/'-» _ «\3 + 7Z rs +(»-«)* (a!-a)* ^ (K-a)' ^ (a!-a)=

or ar' = A -h B (a?— a) + C (a; - a)» + D (a;— a)',

which must clearly be an identical equation ; consequently,

putting a for x, we get A = a', and, taking the differential

of the members of the equation after dividing by dx, we

have 3a!= = B + 2C (a; — a) + 3D (a; - af,

which, by putting a for x, reduces to B = 3a'. By taking

the differentials of the members of the preceding equation,

we have, after dividing by dx, 6x = 2C + 6D {x — a), which,
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by putting a for x, gives C = Set ; and taking the differen-

tials again and proceeding as before, we have D = 1.

Hence, we shall have

h{x — df

Za" Bo,
- + log (a;— a) + C.

3 (* — af 2{x — af x— a

EEMAKK.-^The method here used for finding the value

of A, B, &c., appears to be of remarkable simplicity, and

can clearly be applied in all analogous cases.

Otherwise, and more simply.—Put x—a = s or x=s+ a
;

then, since x =z s + a, we have dx = ds, and thence

x'dx

/ is reduced to
(;r-a*)

r(s + afdz ridz 3a , SaWs a'dzX

3a_3a^= log 2 - — - 53 - ^ + C.

(7.) To complete the integration of rational fractional

differentials, it clearly follows from what has been done,

that it is necesaavy to reduce the integrals of differentials

of tlie form -r-^

—

jf^ in which m is a positive integral

greater than unity, to that of like form in which m = 1

Tlius, from

dz s^dz Vdz

and d
s dz 2 (m - 1) z^'ds

{z^ +Vf -
^ (z- \-h^f-^ (z^ + hy

byehmmatrng ,^ ^ ^,
- we get
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(2?/;. - 3) ds z_ 2 {m — 1) Jrdi
_

or dividing by 2 (wi — 1) 5-, and taking the integrals of the

quotients, we liave

r ciz _
J {s" + hY

~

dz2?« — 3 r

2 (/« - 1) U" (f + /'/)"'-i ^ 2 (//I - 1) JV {s" +&=)"—»

'

wiiich reduces the proposed integral to that of

dz

J iz'

and by changing m into m — 1, we may in like manner re-

duce the integral

/7-v—

r

,,„. 1
to that of / 7-; ...^ ,

,

and so on to the integral of

/ -rXT5 ' vrhich equals j tan ~
' -7

;

consequently, all the preceding integrals can be found, as

required.

Thus, if 5 = 1 and m = 2, we shall have

/dz 3 1

WTTf = WTT) + 2
*"°"'

" + ^'

C being the arbitrary constant. Also, if ^ = 1 and m = 3

we shall have

r ^3_ _ __2 3 r dz

J If ^\f
~ 4 (s= + 1/ + \J {z' + if

'

which, from
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dz Z 1
+ n tan— 1

.

(3^ + 1)= 2(3^ + 1)=' ' 2

is reducible to

/
dz z

,
30 , 3

, _i , ^
{f + If

~ 4(3= + 1)= ' %if + 1) ' 8

Otherwise.—Supposing the integral

dz

to commence with a, then, by taking the differentials of the

members of the equation, regarding 5 alone to be variable,

we evidently get

- ^^d^fj^-iy = - f tan- l+\d tan- 1

;

or since d tan~^ ^ = rj- -^ 1 1 + 73I,

by substitution and dividing the members of the resulting

equation by — 25(i5, we shall get, after adding a constant,

for correction.

h dz . 1 , 1 s z „
(3= + hy ~ 26» J ' W{^ + 5'^)

It is evident that, by taking the differentials of the members

of this equation, regarding S alone as variable, we may, in

/dz
pr-g—-5rj , and so on to any

'• , C^' + O')

extent that may be required.

(8.) From what is said at p. 351, it is clear that if the dif-

ferential of a variable contains terms which are affected with

positive fractional exponents when the differential is of an

integral form, or positive and negative exponents when the

16
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differential is of a fractional form, that tte differentials miy

be changed into others in which the exponents shall be posi-

tive integers, or, as is usually said, the 'expressions may be

rationalized.

Thus, the differential (aa?* + ix^) dx, which is of an in-

tegral form, by reducing the indices of « to a common de-

nominator, is equivalent to {ax* + hx^ dx ; which, by put-

ting X = s*, and dx = Q^dz, is reduced to the integral form
'

63° {az^ -f h^) ds, which is ratioinalized, or the exponents of

s are integers. By taking the integral of the transformed

differential, we shall have

/{Gas' + 6b^ dz = ^a^+^bz'+ G;

or, putting for z its value a?*, we have

3 if 2 , i
jOX' + -^M + C,

for the integral; C being the arbitrary constant.

Also, the integral / —7—^

—

- may clearly be rationalized
•^ as* — «*

by putting x = z^ and dx = dz'^dz, which will give

= 23' + Sz" + 6z + 6 log (2 - 1) + C
;

which, since z — x", is easily reduced to

/ 24/33 + 3^/x + 6^/x + log (,i;*— 1) + 0.
x^ — x^

r.-^/nx I

]^

^ dx, may be freed from the nega-
X* + x"

tive index of x in its numerator, by multiplymg its numer-



FRACTIONAL FOKMS. 363

ator and denominator by »*, wMch reduces it to

/ax~^ + 1 , ra + x^^
dx ^J dx;

x^ + x'-^ "^ x^ + x^

"whicli, by putting x — s^^, becomes

12 fP^i ^^^d. = 12 /""^ + 12 f^%./ a' + s" J s+1 J z +1
= a [62= - 122 + 12 log (3 + 1)]

/dx— T , by putting x = s*", becomes
»*+ »*

10 / T ; = 10 / -, =: 10 / {3*dz—sd3 + -. -).

= 2s= - 53= + 10 f-
sda

s' + l'

noticing that this integral can be easily found by diverging

series.

(9.) If the surds which enter into the differential coef&-

cients of a given binomial form, contain the simple power

of the variable, then it is clear that the differential may be

rationalized in like manner as before.

Thus the differential [3 (a + hxf + 2 {a + hxf] dx is-

rationalized by putting a + bx=: s', which gives

6^dB
ax = —=— :

and thence the proposed differential becomes

(3s* + 2s=) X —j~ ,
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which is of a rational form, whicli reduces the integral of

the proposed differential to

the same resiilt that the immediate integration of the pro-

posed differential mil give.

AT ^1. • ^ 1 ^ {a + hxf + (a + hxf ^ . ..

Also the mtegral of ^^ ^-j '- ax, is easily

(a + ixy

rationalized by putting a+ix = 3^% which gives

123"(fe
ax = —Y—

;

and thence the proposed differential is reduced to the rational

differential

12s'^ 12g'°<fe

whose integral is

4s»«- 123'» „_4(a + Jaj)+* 12 (a + J.t)^^ .,'

~5b + "136" + ^ - u + ~~^m
—

" + ^-

The integral of —-j--^ y-r is rationalized by putting

a^—ix = ^, which gives tZa; = j— ; and thence the

•proposed differential is reduced to the rational differential

r ads _ 1 r_d2_ _\ r dz
J ^~a^~%} z -^^a

~
2J s'Va '

whose integral is

as required.
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The integral of —-v- r is rationalized by putting

1 + a; = s", whicli gives dx — ^sds and a; = s° — 1, which

reduces the proposed differential to 2 (s' — 1) dz, whose inte-

gral is

The differential j , by putting 1 + £b = s', is re-

(1 + a?)»

duced to the rational differential is*dz — Ssds, whose in-

tegral is -? ^—H U, as required.

(10.) We now propose to show how to rationalize differ-

entials whose coefficients involve the square root of an ex-

pression of the form a + hx + ex', or an expression that

may be supposed to be comprehended by this form or come

under it.

dx
Thus, to rationalize the differential , ., „ >

"^^
' Va + bx + cx^

assume

a + hx + Gx' = {x + sfc = x'c+ 2xso 4- 3\

which gives a + hx:=2xsG +3^ and gives

V-
a + bx + cx^ Va + bx + go?

X = X.
c y'c

Ob ~~' CiS

and thence x = z- =•

;

2e3 — b

by adding z to », we have

\a + bx + GX'-
^2^^_j^ ,

and by taking the differential of the value of x we also have

_ — 2c(a — fe -f Gs^) dz
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Heace, from the substitution of these values in the given

diEFerential, it becomes

2 {a— bs + cz^) \/cd3
~

{2o2 — b) (a — bs+cz'}'

or by reduction we have the differential -7; j- , "which is
' 2o3 — b

reduced to —
j^ tt -r- Vc, which, by integration, gives

——, '- for the integi-al / -—, 5 sr , as re-
4/0 ° J '^ {a -\- bj> + GX-)

quired.

If c is negative, or the proposed differential of the form

dx
,

~
-^^ , we may find the factors of a + 5.r — cx^ by

J CL ~f~ Oi)C ~~~ CUT

solving the quadratic equation a + bx — cx^ = 0, or its

equivalent a^ aj = - ; whose roots will be found to be

X-
2c

ana a; _
^^

the first being positive, and the second negative when a is

positive.

Hence, if a' and b' stand for the first and second of these

roots, we shall evidently, from well-known principles, have

(a' — x) (x~ b') equal to —|- — a^ ; consequently, the
C G

dx
proposed differential is reduced to

V{a' ~x){x — b')

To rationalize this differential, we may assume

(a' -x) {x- b') -{x- 5')V or a' - x = {x - b') 3',

, . , . a' + 5V
which gives x = ^

-

^
;
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whose differential gives

_ 2 (i' - a') zdz
"^''-

(3^ + 1/ •

Hence, since 'i/{al — x)(x — h')=\-^-—\z^

dx 2(fe

^^ "^"^^ §"* VcV{a'-x)(p-b') = WTiy ^^^°^ ^'

a rational differential, since s is not affected by the surd

sign.

Remark.—If the proposed differential is of the form

\/{a + hx + cs^) dx,

by multiplying and dividing by ^(a + Ja; + ca?) we have

{a + bx + ex') dm

\/{a + bx -{- ox?)

'

which is equivalent to

adx bxdx ca^dx
+ „ , I—r-^ +

|/(a -\-bx \- C3?) ^/(a + bx + caF) \/{a + 5* + cx-y

in which, as in the preceding examples, the irrationality is

brought into the denominator of a fraction ; which we may

clearly always suppose to be d(me in practice.

To illustrate what has been done,, take the following

EXAMPLES.

dx
1. To find the integral of the differential _.

Va + car

Because the first of the preceding general forms, or the

general form in (10), by putting J = 0, is reduced to the pro-

posed example ; it clearly follows, that by putting 5 = in

the results in (10), we shall get the corresponding results in
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the preceding example. Hence, we shall get — log Cz for

the integral frr^=„^ as required.
" J Va + car

2. To integrate the differential ——r -».

By putting 1 for c in the second of the preceding general

a' 4- h'z^
forma (see p. 366), we shall have x = —^ r- >

*' ^^^ ^'

being the roots of the equation US' — hx — a=0; and

or since (from p. 366), z = y p , we shall have

/dx _ Q . _i /'^' ~ ^

4/(a +hx — x^)~' ' X — b''

de
3. To integrate the differential—^-^ -j-^r

.

It is manifest from the nature of a differential, that the

integral of the differential — in 3, must be ex-

pressed by a logarithm, and be of the form

I ^{J^\<?^) = ^°S ip^ + Va^ + <?x^

divided by c, or of the form log \ox + |/(a^ + (?d^'^.

Since the differential of this is cdx -| -—,—'—r-—
, which

|/(a^ + c'V)

divided by c, is easily reducible to

|/(a^ + <rar) ^
-"
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which, divided by the quantity ex + /a- + cv', gives the

proposed diflerential, as it ought to do. Consequently, after

the addition of a constant to the preceding integral, it will

represent the complete integral of the proposed differential,

as required.

4. To find the integral of the differential —--^^ s-sr-° a; 4,' (a? + cruy)

Proceeding as in the last example, we have

dx dx //a- A

we get

dx _ dy

or putting - = y, we get

» |/ (a' + cV) ^/(ay + &)
'

or from 3, we have

r dx -^ 1 Va= + oV + a
/ ./ a I i1 = log 083

,

as required. And thence

/(lug I

^^T^^) = - log-log«|/Wl^ .^) + ay.

5. To find the integral of --j- j- by rationalizing it.

It is manifest that, as in the Diophantine Analysis, we
may assume

1 - iff' = {1 -xsf ^1 -2x2 + v?z\

and thence get x =
:j ^ i

which gives
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Hence we shall get

r_d^^_ _ r_dB__

and f^J^, = 2 /"r-^ = 2 tan-' z + 0.

Another form of the integral of the proposed differential is

well known to be expressed by

Since 3 = , it is clear from tan 23 = :; ;

,

X 1 — s-

that we shall have tan 2z = —^
; consequently, we

V 1 — X-

shall have 2 tan-^a equal to sin -'a?, which is as it ought

to be.

dx
The integral of ,-^.— 5 is found by putting

25

1 +3"
V2bx — a,-' = a-s, or 2Sa! — ar = as's^, or

:j—j—^ = a),

and thence dx =
(1 + 2/

TT 2fe
^Hence, since xz =

.^ , we get
i- -\- z

r ^ C idz ^ ^ ,

J VW^^ = - y ITI^ = C - 2 tan- .

,

dx

as required.

Finally, the iptegrals Of ^^^^^-^—^^ and
;^^-^^p^)-

can be done in like manner to 4 and 3.
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dx
6. To find tlie integral of the differential — ,.

(1 + ^f
/OJtC OS

r = — + C (C = const)

:

{l + xf Vl + a?
^ '

since its differential is r the proposed differential.

(1 ^-w^f

Eemarks.—^It is easy to perceive that the differentials

duo . dx
and

\/{a -\-hx + CO?) \/{a + bx — co?)

(given at pp. 365 and 366) admit of the following useful

transformations.

It is clear that we shall have

dx dy

and

|/ (a + &« + G3?) \/o |/ (A^ + y^)

dx dz

^{a + hx — caf)
~

\/c VW^^

'

It is clear that in this way the integrals

dx ^ n dxr dx , n
J \/ (l -\- X + or) J .^(l-\-x+ar) J \/{l + x — a?)

are reducible to the forms

/7
dx , f* dx

and

(i-ri ^/{i-(-i)'
V2

I
I

which, by putting a; + ^ = s, and a; — ^ = 2', give

'^
=logC{. + /(3^+|)

3
^)
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, % f 'Y ^ 2 I ;, V^ A Aand —^ I E = —;=. arc I rad = -^ and sm = s i.

Those correspond to the right members of the first and

second equations reckoned downward ; which are made

integrable by putting

X + -^ = 3 and X — - = z,

as below.

(11.) Supposing the variable enters the coefficient of dx,

in the form a;"' (a + ix^ydx, called a iinom.ial differential,

such that the exponents ?«, n, and p are integral or frac-

tional, positive or negative ; then we may clearly proceed to

simplify its integral as follows

:

1. It is manifest, that m and n may always be regarded

as being integers, since they may always be reduced to

integers by introducing a new variable.

2. n may be supposed to be always positive ; for, by put-

ting - for », ss" becomes — = y-", in which, when n is

negative, — n must, of course, be positive, and in y-" the

exponent is positive, as proposed.

3. Hence, the integral I of {a + ia^ydx may always be

supposed to be of the same general form, in which m and n
are integers and n positive, while m and p may be nega-

tive, and at the same time p may be fractional.

4. Eesuming the proposed differential, without; regarding

the preceding reductions, and putting a + hx" = s, we shall
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get X = I—r~~)") wHch gives

1 i-i
dx = —1 (s — a) " ds-

consequently, the integral of the proposed differeatial is

reduced to that of the' integral

^ p m +1 ,—̂ n /
(^-«)

"
"^^^ W;

which clearly shows that its integral can he found when

— is an integer; this ieing called the condition of in-

tegrdbility of the expression.

Because I x"' (a + bx^ydx is equivalent to

rx"' +
"f {ax-'' + hydx,

if in this we put ax'" + h = s and proceed as before, the

integral reduces to

m + 1 /*

-^^^— / {z-h)
—

n—'-^s^de .... (2).

Hence, the integral can clearly be found, when tJie con

dition of integrahility is represented by • + ^ = an

integer.

EXAMPLES.

1. To find the integral of I x{a + huP^dx.

Here, since aj™ is represented by x, we have m = 1, and as

Jaj" is expressed by Sar', we have n = 2 ; consequently, the
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T . ~ . •,.,., m + 1 1 + 1 -, .

condition of mtegrability becomes = —„— = i i8

satisfied, and the integral must be exact

By substituting the values of m, n, and p, we shall have

fx {a + bx')dx = -^ f{3
- a)° z'dz

= [since (s-a)° = 1] ^ x | s' +

2. To find the integral^£»-= (a + hx^y^dx.

Since m = — 2 and n. = 2, we have

m+1

,

11
,—^- +^=-2-2 = -!=^ an integer,

which satisfies the second condition of integrability. Hence,

we shall have

fx-^ (<z + harf^dx =fa>-' {ax"- + b)~^ dx =

3. To find

Jaf {a + haff dx = ^J {z — a)^ dz

zb

4. To find the integral / -

dx

(1 + ^f

Since the integral is equivalent to / (1 + as') * cfa;, we have
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n '" + 1 1 J 3,13 .m — 0, = -, and as » = — jr we have 7: — t: — — i-

an integer, and we have

^(1 + xy^ dx= -
f~{3- by z'^ dz =

4/(1 + 3?)

5. To find tlie integral / -^
^

.

Because the integral is equivalent to I a? {a^ + a^^dx,

we have m =; 5, n = 2, and j) = —1,

and = T- = 3 an integer,
n 2 ° '

and we have

fa^ (»= + ay dio =
^ f{z

- aFf z-^ dz =

^_„=, + ^log. + C = J-^V^log(a=+ ^-0 + O;

which may also be found by converting the fraction —^—

5

into a series, arranged according to the descending powers of

X, and then taking the integral of the quotient

6. To find Z*-^—,— = fa^ia + My^dx.
J 4/(a + hdff-) J '

Since m = 5, «. = 2, and ^ = — -, the equation/I p "*+' 1

ie" (a + hx'^ydx = ^^^ J {s — a) » s'ds

becomes

ya!» {a + M)-^dx == ^ f(z- ays"* (fa =
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7. To find the integral Jx-^ {a + bs^fdx.

This integral can clearly be easily found, since

m + 1 —1 + 1

3
0,

m +1

and —~ f {z — d)~^ 'zHz

nb

1 p. ,2^-1

is reduced to - / (a.— a)-^z'dz = 77 / .

By putting s = y' we have

ds = By^dy, and s'cZs = ^y^<^y,

and thence we have

By putting y = !;«
, the integral / - is reduced to

/ -5—-- ; whose integral can be found from the principles

at page 371, &c.

8. To find the integral / x-^{a + la^) dx.

x-^ {a + la^) dsc- equals a log x + — +G, as re-

quired



SECTION IV.

REDUCTIONS OF BINOMIAL DIFFERENTIALS TO OTHERS OF

-MORE SIMPLE FORMS.

(1.) These reductions generally result from the differen-

tial dxy = ydx + ojc^y, wHch gives

ydx = dxy — xdy and / ydx = xy — j oady,

or / xdy = xy — / ydx,

"whicli is called integration iy parts; and reduces the in-

tegral / ydx to the integral / xdy, or the integral / xdy

to / ydx.

Thus, if we represent {a + te")^ by z"", we shall have

(a + Ivf)" — zf, and thence

x"'dx = z^d ;-,m + 1

which gives

fx^z''dx = £P —!^ ^^ /"»"• + "s'-irfa; . . . .(a)

;

•/ m + 1 m +1J ^ '

which reduces the integral / x"'s''dx to the integral

/«;"» + "z^-'^dx, in which p is diminished by unity, while m

is increased by n.

Also, from a3'"s'cfa; = »'"-" + 'c? /*(« + bx^yx^-^dx,
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we shall, as before, get

faTz^dx = gp^i/"'"~7' - ^^^^^r fa^"z''*'dx.. . (J);
J (j>+i)nb {p+l)nbJ ^

^'

wbicli shows that the integral / x^'e'dx is reduced- to the

integral / x"'-"s'' + '&•.

Because the integrals in the right members of (a) and (f/)

admit of like changes, it clearly follows, if j? is a positive

integer greater than 1, while wi+ 1, 7)i + n+ l, m+2ii + l,

&c., are finite, that the exponent^ will finally, by successive

applications of (a), be reduced to unity, and thence the in-

tegral
I

x"" (a+, hx"ydx will be determined ; and in like

manner, from (b), if jo is a negative integer numerically

greater than 1, while h, p + 1, p + 2, &c., are finite, it is

manifest that the integral will be reduced, by successive

applications of (5), to an integral in which a + hx" will enter

in the form (a + Ja;")~' = ^— ; consequently, agreeably

to what has heretofore been shown, the integral will be re-

duced to the integral of a fractional diflTsrential,, having a

rational denominator, and is to be, according to what has

been shown, regarded as known.

(2.) From s = a + Ja;", we get a ~ z — h^ and

J = gaf" — oas^", and thence

ajx"'s''dx = faf3''*^dx — bfaf+"s''dx,

and bJaTz^dx =y a!"'-"s'' + ^dx — aJx"'-''zPdx.

Since, by putting p -\- 1 for p in (a), it reduces

fx"'2''*'dx to s»+i^^ - (i^ + ^) ^^
fx^^^^zfob:,

J m + 1 7n+l J '
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the first of the preceding equations gives

J a (w + 1) a (m + 1) J

(^O;

and, since by changing m into m — ?i, and p into _p + 1, in

(a), it gives

J m —m+1ot — /4. + 1./

which being substituted for / a;'"~"s'' + 'cZj! in the second of

the same equations, we readily get
^

Cx'^z''dx —

(^7t + m + 1) ft {pn + m + 1) bJ ^ '

It will be perceived that in (c), the proposed integral is

reduced to an integral in which m is changed into vi + n,

while in {d) it is changed into m — ?). It is also clear that

integrals which can not be reduced by (a) or (b), or with

difficulty, can often be easily reduced by (c) or {d). Thus,

the integral j x-^ {a? -\-. x^)~'^dx, in which m— —2, n = 2,

J?= — 1, a — a^, and 5 = 1, is by (c) immediately reduced to

J'x-'{a' + x')-'dx =

a^'"-' -2 + 2-2+1 r .,^„ .,

a= (- 2 + 1) a' (-2 + 1)

1 l/*c?a; 1 1 ^ ,x ^
a-x wJ « + XT a'x a* a

In like manner, by (d) the integral / x^{a^ + x^)~'dx is

easily reduced to

y*a^ (a= + (r?)-' c^a; = ^ - ^ log (a' + x') + C.
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(3.) Multiplying the members of z==ft + i3if by x'^s''-^ dx,

and taking the integrals of the equal products, we have

faf^s^dso — a faTz'-^dc + Z> / a!"' + "s''-*da!.

To the products of the members of this by ^
, adding

the corresponding members of (a), we get

(l + ^^) Cx'^Z-'dx = 2" - —- + -^ fx^Z'-'dx,
\ m+1/

J

m+ 1 ?n+lJ '

or-its equivalent

fx'-s'-dx = s"
"'"'^'

-, + ^^^^ fx"'s»-'dx.. . (e)
;

•/ pn+m+1 pn +m+ iJ .

^^

which reduces the integral / x^z'dx to the integral

/ x"'z''~^dx, in which s" is changed into z''~\ Thus, if

s = a^ + ar* we have j? = i, a=^a^, and n = 2, and thence get

x'"zdx = z s-
-< s / '"'"diem+3 m+SJ

which is clearly the same result, that the immediate integral

of the proposed differential will give. If ^ stands for a

positive integer, it is clear that successive applications of the

above formula will reduce / a;"" z'' dx to

/ x'"z''-^dx, JaTz'-^dx f.
x^dx.

Changing^ in (e) into j) + 1, multiplying its members by

(j) + 1) n + m + 1, transposing, &c., we have
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Cx'^s''dx =

wMcli reduces

lx"'s''dx to jx"'z''+'^dx,

and Cx'^z'-^hlx to jx"'z''*^dx,

and so on. Ttus, if j? = — 3 we have

/ x"'3-^dx — —^ ^ — I af2~^dx;
J Ian Ian J

C m -%j s-*!B'"+' -n+m+1 r
I x^s ^dx = — / a

•/ na na »>

Hence, if s = a^ + x' and m is a positive integer, the

integral

x"'s-^dx — / , , , ;J or + a'

-which, by converting -^ j into a series arranged accord-
3/ ~|~ (Z

ing to the descending powers of x, can now be easily found

by the common methods of integration.

We will now, for convenience in wh^t is to follow, collect

the preceding formulas into a

(4.) Table of Formulasfor the Reduction of the Integral

fx"" (a + hsfydx — jx"'z^dx.

x'^s''dx — ^ —

r

^—
,-v / af'*"s''-'^dx.
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II.

III.

^ a (m + 1) a (ot + 1) ^

IV.

fsTsHx = s" ^-^^^^^ + 2E!* fx'^z'-^dx.J jpn + m + l pn + m + W
VI.

/ a;'"s^cZa! =— g'' + ' 7 + ^^^-^7- ^ ,, - / x"'2''*^dx.
J a\jp-\-V)n a\p-{-V)n J

This table, under a different arrangement, is substantially

the same as that of Mr. Young, at page 42 of his " Integral

Calculus ;" noticing, that our formula i. takes the place of

his formula li., which is incorrect.

(5.) To perceive the use of the formulas, take the follow-

ing

EXAMPLES.

1. To find the integral ^ «"* (1 — x'fch:.

3
Since m=— 4, n=2, /> = ^, a=l, and 5 = — 1, it is

clear that formula I. reduces the integral to
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dx

and another application of I., reduces / «"- (1 — xydx to

c.

hence, we have

J
«-*

(1 - x^ydx = — ^^-s-,3— + ^^ + sm-'a; +

2. To find the integral faf (1 - iB=)-=c^« = fa^z-'dx.

Since m = 5, m = 2, j? = — 3, a = 1, and S = — 1, from

II., we have

fafs-^dx =^' -fx^s-'dx;

and another application of ii. reduces

/ a?z~'^dx to / a?z-^dx — —^ / xz-^dx.

Hence, / x^z-Mx = —^ - \- I xz~^dx-

since Jxz'Hx =f,^J^^. = -
^ ^^g (1 - a?) + C,

the integral becomes

f a?dx _ a;* »' log (1 — a?=)

y (1 - £C^/
~ ^{X-a?J 2(1 -^«) 72

^

3. To find the integral Jx-*'{a? 4- a;'')-*tZa;.

From m = — 4, w = 2, ^ = — 1, a = a^, and J = 1, we

get, from iii,,
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fx-* (a" + a?)-'dx =fx-*z-'dx. = ^^^ - ^Jx-^'s-'dx

= — ^-Ta -^1 x-^-z-^dx;
Saror aV

and from another application of ill., we have

/x-^g-idx = = / -2 2-^dx = 5 / ;-.

Hence, we have

fx-\a? + a?)-'dx^-^+\- + \ f-^,J ' 3aV a*x orJ ar-\-a?

and since

dx

1 r dx _ 1 r a _ 1
jtan-^-;
a

a'

consequently, we shall have

4. To find the integral Jafi{a' + aP^^dx.

From m= 5, « = 2, J? = — 1, a = a= and J = 1, we shall,

from IV., get

fa^ia' + aF)-''da! =fafi3-'dx

03* aV a* .
, ,, ^

5. To find the integral J s^ {a^ + a?fdx.

From m = 4, « = 2, ^ = -, « = "«=, and 5 = 1, v. gives
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aj* (a= + 05=)V« = / x^z^dx — z^ ^ + fi7
**^ '^^'"*

From IV., we reduce

/ x^z'^dx to xh~^dx = s* V T" / ^^'^^^^

and another application of the same formula reduces

Ja?3~^dx to Ja?s ~ *<?» = s* | — ^-y s ~*6?a!

;

consequently, since

fz-Ux = f—^—^ = log [a? + -/ (a° + «=)] + log C

= logC [.+ ^(.= + 0.)] =log (-_±ld^l±^),

by putting C = - . Hence, we get

/ X* [or + x-ydx — ——^ — +

for the sought integral, supposed to commence with x.

6. To find the integral I x{a^ — x^~'dx = I xz^dx.

3
Since ?« = 1, m = 2, ^ = — ^ , a=^c^, and 5 = — 1,

we get, from Vl.,

/xz~'dx = —;
5 / X3~'dx

;

consequently, since

/..-^.^. ^
/tcJ"^.^

= - ^(«= - 0^) + 0,

we shall have
17
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^ a' 4/ (a^ — ar

)

a

in which C ;= the constant .

a

7. To find the integral Jx"'{l — a?)~^dx.

From TO = n, 71 = 2, ^=— jr, «= 1, and J = — 1, we

readily get, from iv.,

Jx"'{\—a?)~^dx —

Substituting successively the odd integers, 1, 3, 6, &c., for

m, in this, we have

r a?dx _ _ 3!° |/ (1 — x") 2 /• tEcfa

^V(l-a!^)~ 3" +3^:^(1-0!^)' '

from which we readily obtain Mr. Young's results at p. 44

of his "Integral Calculua" And putting the even integers,

0, 2, 4, 6, &c., successively for in in the preceding formula,

we in like manner get

/dx . , ^
|/(1 — ar)

and so on ; from which Mr. Young's results, at p. 45 of his

work, can easily be found. '

8. To find the integral y aj-"* (1 — osj'^dx.
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Since m^ ~m, n = 2, j)= — ^, a — 1, and 5 = — 1,

we have, from iii.,

m — 1 m — lJ '

_ 4/(1— £B^) m — 2f dx
~ ~ {m — 1)

»"•-! "^ nT^lJ a!'»-y(l-£By

If we put 3, 5, 7,_&c., for to in this formula, we have

dx — 1 1 r dxr dx -^1 1 r
J x^a/(1 — x')

~
avrsn —^A~i '^J

.

JLI

,2\ )

«V (1 - x')
2a,3 (I _ gfiy i a-'

a; (1 - apf

and so on ; and putting 0, 2, 4, &c., for wi, we have

/dx - . ,

^ £»V (1 - «') a;
"^

'

a;*(l-a;f~ 3^ + 3^ a^y (1 _ ;«=)

'

and so on, to any extent. The preceding results agree with

those of Mr. Young at pp. 46, 47, and 48 of his " Integral

Calculus ;" noticing, that the integral

J xs/{\-^) - ~ ^""^
X + ^

can not be found by the preceding process.
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9. To find the intescral

Here m^m — ~, n = \, a^=^2a, 5 = — 1, and ^ = — -

,

and thence, from iv.,

Jx"^^ (2a — xy\dx ~

(2a — x)i x'"-i {2m — J)a /* »"'-> eZis

or

7?i «i J Max -a?

x'^dx

fVlax—a?

x"'-W2ax~x' {2m. — 1) a P a^-'^dx

m m J V2ax — x^
'

which clearly shows that by a sufficient number of repe-

titions of the process, the integral will be reduced to

/dx . , a? _— = versin"' —h C.
V2ax — x'' a

10. To find the integral /»"*(«= + x'^ydx.

.Since 7i = 2, a = a?, and 5 = 1, we get, from vi.,

(^a^' + ar')-" + '»"' + » 2(l-») + m+l/'

~ 2a= (^-1) (a= + x^^~^ + -2a\p-^)J ^"^ " ^ ''^'^

'

which, by putting w = 0, reduces to
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•wticli agrees with an equation previously found.

(6.) It is easy to perceive that we may apply the method

of integrating by parts, to integrals of transcendental forms.

Thus, to find the integral of X log" xdx, in which X is a

function of x, and n denotes the nth power of log x, we have

/ 'K.dx log"- X = log' X I Xdx —J I
J Xdx x n log"-*aj— |;

or, by putting / X.dx — X, we have

/ jLdxlog'x = log"* / X.dx —
I
in—-'(ij3log"-^a;j

;

which, by putting —- dx = dX^
,
gives

flog"xXdx = log"
X
J Xdx — nJdS.. log"-' x (1).

If M is a positive integer, and

X X.
Xdx = dXu —i dx = c/X,, — dx=: dX^, &c,,

X X
- 7

are exact differentials, it is clear that log"~'a! will finally be

reduced to log" x = l, and thence the integral finally be re-

duced to an algebraic form. Thus,

x^ log xdx = log a? X -„- — 'q- + C

;

/ a;'cZa3log^a3= j-log^a? — J / a^logxdx,

and

J a?log xdx =^~logx — ^J a^dx = | log a? —j^ »* + 0,

and thence we shall have/as* 1 1
x^ dxlog' X = -^log' X — -o^logx + -^x-^ + G.
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In a similar way, we have

TTdx log" X— J log"a! ^ / «"" log"- * xdx,
./x"' + 1 n 1 /*

x"'dx log"
-

' aj = log"
-

' a; —rj a;"* log" - ^ajcfo;,

and so on to any extent, when to is different from — 1, or

when m + 1 is diiferent from naught.

Hence, when to + 1 is different from naught, we shall,

from the requisite substitutions in the first of these equations,

a!"'c?a!log"aj= -(lop;"a! T-loaf~'a; +

.-^--^3 log"-' a; !^-
Ph-^ 'log"-=a;+ &c.l + 0.

(to + if (to +lf °
I

If TO + 1 = 0, or TO ^ — 1, we have

/™ 7 T - Cdx, „ log^ + 'a;
iB'"cfo)log"a! = / — log"a;= —2—— + G.

We may, in much the same way as before, find the integral

Cx^dx /* ^ , 1 „ /* m^ii d.n
/, = / a;'"ctelog-"a! = / a!"' + 'log-"a!—

=

^ log" a; ^ ° J ^ X

aj"' + Mog-" + >a!
,
TO+ 1 /• ^^.rfa?, „^, as^ + i

^ 1 7 / aj"* + ' — log-" + 'a! =
n —

1

n — I./ X ° n—1

(lo^"-.+^ log—.+ (^^^33 log—.+ . .

.)

(to + 1)"-^ /•a!"'rfiB

'*'

1.2.3 . . . (?i - ly I^

'

/x'^dx
q can not be found
log X

by this method. If we put aj"*
+

' = 3, we shall have

af"dx = — and loa: x — —s.— •

TO+ 1 ^ m + 1'
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log X log z '

whose integral can be found by series.

Thus, since d (log «) = -—, we shall have

d (log x) _ dx

log X X log X '

/dx— = log log X + const
X log X ° °

If (as is sometimes done; we write log^ x for log log a;, log' x

for log log log as, and so on, then we ought evidently to

express the second, third, &c., powers of log x by such

forms as (log xf, (log »)', &c. Hence, adopting this notation,

/- dx—-^ — log^ic + const,
x log X/dx

X log X Pd (log' «) . , „

g, Q „ log- a; •/ log- X ° '

/ ^i r^o 1 , = log* a) + C,
•/ a; log a; log- x log^ a;

°

dz
and so oa If we integrate , by parts, we shall have

dz z r , I ^ \ z r dz

J log z log z J vloff z) log z J
(log z log 3 J Vlog s/ log s J (log s)^

log Z (log Sf y ^ (log 3)=

"logs (logs/ (logs)' ^^ (iog^'

s s 2s 2.33 2.3.4s .

= i^s + (bg-i? + (ki^ + (To^ +(-b^ +&c.+const

s /, 1 1.2 1.2.3 „ \

==
i

1 1 + r~~ + ?T—^ + 7i ^ + <*°- )
const

;

logsV logs (logs)^ (logsy /
'
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, • T r ^^
which is clearly not adapted to finding the integral J ,

—

—

in converging terms, on account of its evident divergency.

Eemarks.—1. Because

we may clearly take this expression for / ,

—

~

.

2. K M = log 3 we shall have s = e", e being the base of

hyperbolic logarithms, which gives ^
=

; or, since

we shall have

= logM + M + 23 + 2-3"^ +
2 3 4^ "^ "^^ +°°^st

From u = logs, we have log u = log log s = log- 5, &c.,

and thence get

r ds
,

," , (log zf (log sf „

(See pp. 65 and 56 of Young's " Integral Calculus.")

(7.) It is easy to perceive that we may readUy find the in-

tegral of the differential, aj"* a^ dx, which involves the expo-

nential a', in much the same way as before.

Thus, since a?"" a'dx = x'^d la'' dx = x"'d ,—

^

log a
we get, by integrating by parts,

aTa'^dx— , , / ic""-' a* dx,
log a log a./

'

fx'-'a^dx =^— - ^^^ fx^-'a-dx,

'

J log a log a J '
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and so on. Hence, we shall have

/ x'^d'dx = = ix'"' J f-J log a'' \ log a

m(m— l^"*-^ m(m—l){in-2)x'"-^ \

noticing, that if tn is a positive integer, the last term within

the parentheses will be ±
" "

'

, accordingly as m is an

even or odd number. It is easy to perceive that we shall, in

the same way, have

—~- = j w^x-'^dxiB also easily found to

be expressed by the form

"cC dx a"

r-a" {m~l)x'"-'^

}^± ^ A.
(log «)'

, ,

Gog"')"'-
''

(to-2)(to-3)"^"" ^(ot_2)(to-3).,
/l+jgg-^a;+ (^°g«)l_+ ,_J^_^):i:° a,™-A,
\ ^m-2 ^(to-2)(w-3)^-- ^(ni-2)(m-3)....l /^

(log g)"'-' /"a^ (Za;

(m — 1) (m — 2) w X

If we expand a^ according to the Exponential Theorem

(5), given at page 51, we shall have

-1,1 ,

(loga)V (logaVV
a' = l + log ax + '^2 + T^TT +' '^°-

'

consequently, we shall thence get

/'a^ dx __
J X

log !»+ log ax+
^2 2 +

1.2.3 d
"'

i:2:8':4 4 +^°- +^-

11*
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It is tence easy to perceive how we can fiad the integrals

I x'^a^dx and /
„. ,

by means of the Exponential Theorem ; by converting a'

into a series arranged according to the ascending powers of x.

It is manifest that, in this way, we shall get the integral

a; + (1 + log«) 2 + (l loga + ^°-y-
j ^ + &c. + const.

,

noticing, if o = e the base of hyperbolic logai'ithms, since

log e = 1, we shall have

y r^-^ = ^ + (1 + ij 2- + (1 + ^ " o) 3" +&°-+°°^«t.

Because -—— = — = — c?[log (1 — a?)], we easily

which, integrated by parts, by the successive use of the sign

f,
gives

/Ci^dx r
_ ' = — a'' log (1 — a?) + log aJ

-^ log (1 — x)dx\

and integrating again by parts, and so on, we shall have

/a'dx
, ,^ ^

^—^=-aMog(l-a:r)

+ log a oj'j log (1 — a?) c^a; — (^ogafa"J dxj log(l— a;) dx

+ (log ofa'J dxJ dxJ log (1 — x)dx — &c. + const
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3/ tXj Qj

Because — log (1 — «) = a? + g- + 3 + ^ +, &c.,

the indicated integrations in the equation can be performed

as required ; and thence the integral will be found. Hence

we shall have
/a^'dx _

If for a' we put 1 + log ax + (log of rr— +, &c., in this, and

perform the indicated multiplication, we shall easily get the

value of / 3 found above.
J 1—x

Because / — I d I d^dx = / ,-3 n dd',
J 1—x J \ — X J J (1— a;) log a

we shall, by integrating by parts, get

d'dx . / 1 1r d'dx
^ I

-.+
\{l — x) log a {1 — xf{log «);

1.2 1.2.3 , \

7\ ^n ^i — 7q ':z!^ a + &c I + const
(1— a;)\logt«) (1 — ^/(log a/ /

(See Lacroix "Calcul Integral," p. 93.)

It is easy to perceive that the integral

For examples of integrals of the forms / sin'"a!Cos"a3(;^,

, „ , r.
/"sin mx , .

&c., together with those of the form / ---—; ««, &c., we
' " •/ COS ihifj
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shall refer to La Croix " Calcul Integral," pages 99, &c.

;

and to Young, on the same subject, pages 60, &c. ;
and for

the exact Integrals of such expressions, see Young, pages

71, 75.

(8.) 1. To find the integrals

/dx
A C — -

sin* CB cos* a! J sin'sBCOS^aj'

By putting 4 and 3 for m and n, the first expression re-

duces to/dx _ 1 |_
5 r dx

sin* a; cos' a;
~ 3 sin'ajcos^a? ' S^/ sin^a; cos^a;'

and putting 5 and 2 for m and n, the second reduces to

r dx _ _ 1 5 r dx
.

J sa^x cos^a)
~ 4 sin* a? cos x 4^J &m^x cos^as*

In much the same way, we have

J cosrxJ amrx (

-e 1 „ r dx
+ 3

sm X cos- a; •/ cos" as

r dx 1 „/*«'»
and / -T—. j— = -:-2

f- 3 / ^-j-
^ sitfa; cos a? sin'' a; cos x J sura

also, from (Jc) and (^j these results become

sin x 1 r dx/dx _ sinx 1 /*

cos^a;
~ 2 cos^a; 2*' c

C dx _ cos a? \ r dx
J sin* a?

~ 2 sirfa; 2^ sin a?'

Hence, from the requisite substitutions, we have

r dx _
J sin* a; cos* a;

1 5 5 sin x 5 r dx
3 sin'a; cos^aj 3 sin a; cos^aj 2 cos'a; 2J cos x
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and
J SIsm°a3 cos'»

+
15 cos X 15 r dx

;

8 •/ sin (B

'

4 sin* a; cos SB 4 sin'^a? cos « 8sin'cosi23

consequently, the proposed integrals are reduced to the

. ^ , r dx ^ r dx
integrals / and / -.—-.

</ cos X J BVXX

2. To find the integi-als

dx

cos X' J smx cos x

'

r_d^ rdx_ ^^^ r
«/ sin X J cos X t/ SI

Since cos x = eos^^ — sin^^j, we have

r_dx_ _ r
J cos X ~ I

dx

cos^
2
~ ^^'

2

, dx

T
a*'cos^2

^(l-tan^l)

=/
cZtan d tan jr

1 + tan jr 1 — tan ^

1 + tan

= log + const.

1 — tan
'

losccTt
1 /TT

(i-^) + const.

Hence, since sin x — cos I ^ — ^), hy changing x in the

preceding results into ^ — x, then, since the differential of

this arc is minus, we shall have

/dx . _ X
—. = log tan - + const,
sin a?

'^ 2
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Because, sin' x + cos- a? = 1, we shall have

J sin X cos X J sm x cos x J cos x J sin x

= log sin a; — log cos a; + const. = log tan x + const.

(9.) We now propose to show how to find the integrals

of the differentials of a variable, into whose differential

coefi&cients enter exponential and trigonometrical functions

of the variable.

Thus, from

J A'"^sin'"a;(fa5 = — J A""^ sin"* - * a;^ cos x,

by integrating by parts, we get

/ A^^sin^ajdZaj^:— A'"=sin"'-'a;cosa; + / cosa'cZ(A'"sin"'-'a!)

= — A''='sin"'-'a;cosa; + alog A / A^'^sin^-^ajcosajafe +

{m — l)jA'"'sm"'-''x (1 — sin^a;) dx,

by putting 1 — sin'' x for cos'' x. From

/*A»r ™ 1 J /*
A a. <^ (sin"' «)

/ A"^ sin*"-* X cos xdx = / A"" —^^ '-

,

by integrating by parts, we have

/*A„r • ™ , 7 A''^sin"'a5 alogA /*,„,.„ ,

/ A^sm^-'ajcosajffe = f'— / A'"'s\n"'xdx\J m m J

Hence, from the substitution of this value and an obvious

reduction, we get

/ A^^sin^ajflte =

— A"^ sin"*-' 35 cos a; H §— A^^sin^a; —m
V^_2g

—

)_

J
^ax gijjm gj^ 4. (jfi — 1) J A"" sin""

- ' xdx —

{m—V)J A"^ sin"* xdx

;
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or transposing so as to unite like integrals, we have

/ A"^ sin"" xdx + (m — 1) / A""^ sin"* xdx +

(ologA/
/-^^.gi^.^^^ ^ («logAy+m-

/"A-sin-xc^^ =

(a log A sin a3 — m cos a;) .+m •
'

(m — 1) jA''^sm'"-^xdx ;

from wbich we get

/A^^^sin^-^a? , , . .

A' "^ sm"" xdx = r-1 rr? 5 {<^ logA sin a? — m cos a;) +
(a log A)- + m^^ °

(a log A)^ + mV ^ ''

In like manner, we have

/*A.. ™ 7 A^^cos""-'* , , , . ,

/ A"^ cos"* ajota; = 7—

;

r-^ ;(« log Acosaj+msma;) -f
./ (a log A/ + m= ^ ^ ''

(a log A)^ + mV '

If m is a positive integer greater than 2, it clearly follows

that (a) and (b) will reduce the proposed integral to others

in which the indices of sin x and cos x will be diminished

by 2, or be less by 2 than in the proposed integrals.

EXAMPLES.

1. To find / e'^sin^aii^a;, and / e'cos^xdx ; e = the hyper-

bolic base.

Since A = e, we have logA = loge = 1 ; and as a = 1 and

m = 2, we have/e" sin a; , . „ , 2 ,

e^ sin xdx = —^— (sm x — 2 cos x) + -^ e^ + const,
o
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^ cos= xckc = —-— (cos a;+ 2 sin «) + g «* + co'ist.

2. To find y 3"^ sin= xdx, and y 3^ cos= aj^^a;.

Here A = 3 and log A = log 3 = 1.09861, &c., a = 1 and

m — 2; and thence, from (a) and (J),

/ S^sm^xdx =
3^ sin a; ,, „ . „ , 2 S"' .

(log 3/ + 2-
a°g3sm^-2cosa.) +

^^^g3^,^^,
X j^-g,

and / 3='cos'a;^a; =
S^cosa; „ „ „ • v 2 3^

(log 3 cos 83 + 2 sin a-) + 7T--iy^r-q, X
(log 3)^ + 2^ ^ ^ " ""^ '

^ ' (log 3)= + 2= '^
log 3-

3. To find / e^ sin aaidx, and / e^ cos aa;(?a;.

From / e^sin axdx = - / e'sin axd (ax),

and / e* cos oa^a? = - / e'^cos aa3<:? {ax)
;

by putting aa; = y or a? = - , we have

/ e^sin axdx = — I e'^sin 2/<^y,

and / e^cos axdx = —̂ / e" cos y<fy.

Hence, from (a) and (&), by putting - for a, we haye

r f- <^y «" /sin y \ 1
y ^"siny^ = -—— (—i^ - cos 2,j

- + const.
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T /* - Ay e" /cos y ,
. \ 1

,
,

and / 6"cos y -f = tt^ ( ^ + sm y I - + const.
•^ " (1)4. p ^ « - ^/ «

By re-substituting tlie value of y, we shall have

e^ sin axdx = r ; (sin ax — a cos aai) + Const.,
1 + a-

e"' cos axc^as = 5 (cos ck» + a sin ax) + const
1 + a^

4. To find / 6^ sin' ^x, and / e" cos' xdx.

From the tables given at pp. 77 and 78, we have

3 sin £B — sin 3a! ,
,

3 cos a; + cos 3.T
sm" 03 = 7

, and cos' x — • -. ,

4 4

which reduce the integrals to

/ ti^ sin' xdx :zz -
I e^ sin xdx — j I e' sin 3xdx,

and^ / e'' cos' ajc^a? = -^ I e' cos aJcZas + j I ^ cos 3a;cfo.

By taking the integrals by (a) and (5), agreeably to what

has just been shown, we have

/ e' sin' xdx =

(sin X — cos a?) — 27i i^^^ Ba? — 3 cos 3a?) + const.,

f'and / e^ cos' xdx =

-5- (cos a; + sin a?) + -Tpj (cos 8a; + 3 sin Zx) + const.

(10.) "We will now show how to find the integrals of dif-

ferentials into whose differential coefficients enter arcs with
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algebraic functions of the arcs. Thus, to integrate

fx{siir-^xydx and fx {cos-'xf dc,

X being an algebraic function of the arc, it is clear that we

may put / Xdx — Xi , and thence, integrating by parts, get

/ X (sin-' xY dx — (sin-' xY Xy—n / (sin-' a;)"-' Xj ^ „ ,

, . , , . f X,dx
which, by putting y ^n-a^V ^^®^

/*(sin-')'-'Xi—^i^ =

(sin
-

' ») "
-

' Xj - (n - 1)^(sin
-

' a^r - = Xj ^-^-

;

and so on to any required extent in this, and such forms as

JX (cos
-' x)" dx, fx (tan-' xf dx, JX (cot"' xf dx... (A).

EXAMPLES.

1. To find / x sin-' xdx and / x cos~^xdx./a?
xdx = q-, which gives

a?
Xi = —

; consequently,

r^ dx , If aPdx

and thence

C . _i„ sin-'ajXar' 1/*,,. ^s-i,
/ X sin-'Xc» = / x^ (1 — ar") Vas =

ar'sin-'a; 1 ,. „, . 1 /* dx
+ i^Kl-^)-5/

2 ' 4 ^^ ^4^ 4/(1-2'')

;—J— sin-' as + jX^{l — aP) + const.

;
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and in like manner,

/ X cos~^xdx = -r cos~'a3 — j ie^/{l — a?) + const.

2. To find / x^-^ sin-'ajd^ and / a?"-' cos -'^xdx.

/x"'
x"'~^dx — — , we shall, by integrating by parts,

from (A) get

/«. 1 • 17 sin
-

' a-iOi"' 1 /" „, dx

m mJ |/( — a?-)

T /* „ 1 17 cos-'ajia?'" I r r,and / 33™ ~' COS" a;aa;= • -| I x"
J m mJ

dx

OT mJ 4/ (1 — U;''

we also have

/dx 4/(1 — «''')»"' ~^ m — \r . dx

^/(l-iK^) m ^ 7a J |/(l-ai^)'

and by the same process

r , dx \/{l—x^)x"'-^ m— 3 r . dx

J ^{\-x')~ TO-

2

m-'iJ V(l-*')'

and so on to any required extent. It is hence clear, that if

m is an odd positive integer, the complete integrals of the

proposed integrals will be algebraic ; while if ra is an even

positive integer, they will be reducible to circular arcs or be

dependent on them.

Remark.—^It is easy to perceive that like conclusions are

applicable to the integrals

I x""'^ t'dTi.~^xdx and I x"~^ taTi~^ xdx.
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3. To find

/-""m'rf

^

= /sin - ^ xx-"^^ dx and fcos-' xar"^' dx

.

/x~'"g,-m-i ^x — = Xi, these integrals
9n

become

r . , „ , ,
sin-'a;,a;-"'

,
1 /" dx

J m mJ a?"" |/ (1 — ^)

, roQS~'xdx_ COS"* a; 1 /* dx
^ J «"• + ! ~ maJ""^^ »i^ *"' |/ (1 — «')

If m is a positive integer not less than 2, we shall hare

- (L-_^'.^ + ^^ /•.— (1 -a^)-i^.,m — 1 m — \J ^ '

by putting forn its value 2. By changing — m into — m + 2

we shall, in the same way, have

J'x-"'*^{1 —x'\-^dx =

m — 3 m— 6J ^ ' '

and so on. Hence, if m is an odd positive integer, we shall

which will enable us to find the integrals corresponding to

any other odd positive integer, while it is manifest from

what is done above, that when ra is an even positive integer,

the integral is algebraic, and can be exactly found by the

preceding process. Thus
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sin~'ajia!~'«= ^ \-
-^ I x~ {i — ar) ^dx

i^ 2x' 2 X
and

r 1 a ,
COS-'» 1 (1 — «¥

/ cos-^x,x~''ax= -r-„ 1- - '— + const
J 2ar 2 X

Eemabk.—It is clear that we may, in mucli tlie same way,

„ J r ta.n^'^xdx , Pcot^^xdx
find / — -—-^— and / ---,— .

4. To find J{sm-'xy dx and fse' (cos-' xf dx.

Since X = 1 we have / 'Kdx = x, and thence, from (A),

I
(sin-^ xf dx = (sin-' xf x — 2 I sin"' x, —j-

^ i

and in like manner jGrom X = a?', we have I yfdx^ —
, and

thence from (A),

C u 1 ^2J
(cos-i «)=£»•'

, 2 r
j a? (cos-' xf dx — —^

f" o / '

,
iii?dx

cos-' X-
vi^-^y

xdx
"We also have / sin-' x ,-— „,

J 4/(1—8;'')

= -sin-'.,/(l-a^) + /,/(i_.^)_^^

= — sin-'a3|/(l — a?) + X]

consequently, we shall have

J (sin-' xfdx = (sin-' a;)^ a;+ 2 sin-' x /(I— a;'')— 2a;+ const
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From IV., at page 382, we have

_ _ 4/(l-g^)a^ _ 2^/(l -a^)~
3 3

'

and thence I coa~^ xa^ —-,-z——

^

•/ ^z (1 — ar)

= — cos-i a; ^^'^-^—3—^- + ^VO- — «'^)
—

, /4/(l-!»=)a5= 2i/(l-a!=)\ a;' 2ai

consequently,

/,.. IV,, (008-^8378!=
ar (cqs~' a;)- oa; = -^^ -—

^

J
COS-' a; [|/(1 -af)x'-2^/{l-x')]-~ + ^ + const.

6. To find / X tan~' aicfa? and / x cot""' a^fa;.

xdx; = —
, we have

/*
/x 1 x2 J (tan- 'asVaj^ r , x^dx

J x (tan-'a;^ dx = ^^ ^^ J tan-'a; ^—^ ...

and
aPdxr r ^1 N2-7 (cot-'a!)'ar' /* , x

J X (cot-*a;y (ia; = ^^ —'— + J cot-'aj --

If at IV., at p. 382, we put a = h=l,n~2, and m = 2,

it will give
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or taking the differentials,

^dx , dx
dx —

l + a?" 1 + ar"

which can be found more simply by actual division.

Hence, by substitution,we have

/ X {t&ar''^xy dx =

^r—'- / tan-' xdx + / tan~' x -,
5

,

and

/ x{cot-^xydx=^ —^ h / cot-'xdx— I cot-'air

—

—;

and since

/ iBior^xdx = tan~^ x^x — -^ log (1 + or),

and 2 = d (tan~* x) = — d (cot~* a?),

we shall have finally

r u 1 X2J (tan-' xfie' (tan-ia;)"
/ a? (tan-' xfdx— -—^

f-
i '-

tan-' Xt,x + - log (1 + ar*) + tan-"' a? -f- 2 + const.,

and

Jx (oot-^ xfdx = i'-^'^l^ + (^^ +

cot-' XiX + ^ log (1 + aF) + const.

(See Lacroix " Caloul Integral," pp. 95 and 96.)
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f-

Eemakks.—It is manifest, from wtat has been done, that

to find an integral of the form

"(g' + h' cos 3) dz

{a -{-h cos z)"
'

we ought to represent it by the form

A sin z /*(B + C cos z) dz

(a + & cos z)"-^ J {a + b cos 2)"-'
'

.For by taking the differentials of these equals we have

(a' + V cos s) dz _
(a + h cos 3)" ~

A cos zdz ('i"') AJ sin- zdz (B + C cos s) dz

{a 4- b cos 3)"-^ (a + 6 cos s)" (a + 5 cos s)"'-^
'

or, by omitting the common factor dz and a simple reduc-

tion, we have

a' + b' cos s = A coss (a + 5cos s) + (w — 1) Ai (1 — cos^ s)

+ (B + C cos s) (a + 5 coss),

or a' — (n— 1) A5 — Ba + (&' — Aa + B5 — Ctt) coss

- [A5 + (71 - 1) A5 + C5] cos's = 0,

which must clearly be an identical equation, and be satisfied

so as to leave cos z and cos^ z arbitrary ; consequently, we

must have

a' — in- 1) A& - Ba = 0, b' -Aa-'Eh- Ca = 0,

Ah - {11 -l)Ab + Gb = 0.

From the last of these equations we immediately get

C = (?i — 2) A, which reduces the second

b'-Aa-W}- {n—2) A«=0, or 5'-B5— {n-\) A=0,

b' -jn-l ) A«
which .gives B = j ;
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and thence from the first equation we have

_ aV - ha'

{n-l){a?-¥y
and of course

^ aa'—W , _, (n ^ 2) {ab'—ha')
-ts = —2 jT- and O = -. ,. , „ jjt-

Hence, from the substitution of these values of A, B, 0,

in the assumed integral equation, we shall have

"(a' + h' cos z) ds _ (a?/ — ha') sin sP {a+h cos s)" (« — 1) {a? — ¥) {a + h cos 2)
n-l"r

1 r\{n-l){aa'-hh')-\-{n-2){aJ>'-ha')coss\
{n-V){d'-hy {a + hcoazf-'-

so that the complete integral is reduced to that of another in

which n is represented by «. — 1 ; consequently, if w is a

positive integer greater than 1, we shall, by successive rep-

etitions of the process, finally reduce the integral to that of

an integral in which n is equal to unity, or to the form

"(j) + q cos s) ds

a + b cos 3

(see Lacroix, p. 109) ; noticing that this integral is reducible

by division to the more simple form

f-

^ hp — aq r dz

h i J a + &COS z'

\ 3.2

If (with Lacroix, at p. 106) we put cos z = „ , we shall

^^* J a + bcoas^^ J a + h + {a-b)x"

whose right member is clearly of an integrable form. Since

cos 2 — COS' H "~ sm- q ,

we shall have
18
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r d3 _ r cfe

J a + b cos z I I „z . 2 ^\J a +0 I cos- ^ — sin-" ^l

/
ds

cos^|((a+5) + (a-J)t,aii=|)

/a — h dz , z

--Tb 2- ^ '''
2

-Ji+ —TT tail o

2
. , ^- b

.= -:;7~5 IK t^"" r —r-T tan ^ + const,

in which a and J are supposed to be positive, a being greater

than b. Since

2 tan-' y j tan - = tan-' —, /
^

'

,

a + 2 o + a cos z

we have

dz 1^1 smz^{a' — ¥)— tan-' —y—^—5^ + const;
/;a + b cos s i/ (a^ — 5") S + a cos s

noticing, that the same integral may also be expressed by

either of the forms

ds _ 1 . sin 4/ (a^ — Z-^

a + b cos z 4/ (a" — b') a + b cos z
+ const.,

ds 1 ,b + a cos z— — - COS"' 7 h const.
a + b cos s ^/a' —b^ a + b cos s

(11.) We have shown, at p. 262, that every differential

expression containin'g a single variable, admits of an integral

of either a diverging or converging form, by integrating by

parts, as in John Bernouilli's Theorem. We have also

applied, at the same page, the Theorem of Maclaurin to ob-

tain series of more rapid cbnvergency than can often be done
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by the aid of the Theorem of Bernouilli; and from the

problem at p. 266 we have obtained formulas for the compu-

tation of such integrals by series of any degree of con-

vergency^ that may be required.

Because, in what has been done, the series have been

supposed to be arranged according to the ascending powers

of the independent variable, we now propose to show how

to apply series to find integrals when the series are arranged

either according to the ascending or descending powers of

the independent variable.

1st. To find the integral of a proposed differential by a se-

ries, it is manifestly necessary to convert the differential co-

efficient of the differential of the independent variable,

according to the known methods, into a series arranged either

according to the ascending or descending powers of the in-

dependent variable ; then, to multiply the terms of the series

by the differential of the (independent) variable, and to add

an arbitrary constant to the sum of the integrals of the pro-

ducts, for the integral of the proposed differential.

It is manifest that the sum or generating function of the

series thus found will be the finite integral of the proposed

differential

EXAMPLES.

/dx
:j J

by a series, arranged

either according to the ascending or descending powers of x.

By dividing t^a; by 1 -f x', when 1 is taken for the first

term of the divisor, we have

/ 5 = / {dx — x^dx + xdx^ — xda^ + &c.

rn^ /y>5 q/I

= a;— y+g- — y+&c. 4- const,
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for the development when the series is arranged according

to the ascending powers of the variable. And by taking ar"

for the first term of the divisor, we have

/dx _ fidx dx dx dx \

for the form of the integral, when it is arranged according to

the descending powers of x. To find the constant, we re-

mark, that X being the tangent of an arc whose radius = 1,

it is clear that, supposing the arc and tangent to begin to-

gether, the constant in the first integral must equal naught,

and the integrar becomes

I.
dx a? a? x^= « - o + ?- - ^ +, «&c.

;

l + x" 3^5 7

while, by supposing a? to be unlimitedly great in the second

integral, it will clearly be reduced to the constant in its right

member, since the terms which involve x must clearly be

rejected on account of the infinite value of », and at the

same time / -——r must equal -pr , the length of the arc of
J x' + I ^ 2 °

the quadrant of a circle whose radius = 1 ; consequently,

the constant in the second integral equals - , and the integi'al

becomes
dx TT 1 1 1 1

a;^ -f 1 ~ 2 x^ Zs^ baf^ 1x' '

dx

f,

2. To find the initegral / -
^(1-*=)-"" -'

in a series arranged according to the ascending powers pf x,

1 , 1.3

= ^+2:3^ + 2A5+''^°-
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wMcli needs no correction, supposing the arc and sine to

commence together.

Since the binomial theorem gives

1 ,. 2,-A ,,a!\13,,135j .

^{l-x') ^ '
' 2 ' 2'4: '

2'4"6

we shall have

1 1 3 1-8 , 1.3.5 ,

which needs no correction, supposing the arc and sine to,

begin together.

/fix
7(r+^) ^ ^°s [iK + 4/(1 + ^)] + c,

in a series.

Because

1 -, 1 „ ,1.3 , 1.3.5
,^-1- ar + ,^x'- ----- x^ + , &c..

^{1+x') 2 ' 2.4 2.4.

we shall have

log[.+ V(l+.^)]=.-J3.^ + iJ.=_^?^-+,&c.,

which needs no correction, supposing the integral to com-

mence with X ; which we clearly may do, since a; = gives

log 1 = 0, as it ought to do.

4. To express y—.^—^ = log [x i- ^{^- 1)] + C,

a series.

Since \/ {x^—1) — xy il -J , we clearly have

^ {a? - 1) x\ xV

1 J^ _1^ 1.3.5
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cousequeatly, we shall have
1 1 ^ 1 S i5

aiid by putting a; := 1 in this, since log 1 = 0, we have

^-~2.2 2.4.4 2.4.6.6 ' '

and thence

1 1.3 1.3.5

1 1.3 1.3.5
, ,+ ^°s^ - 272^ - 274747.

-
2:4:6:6.«-« +' ^°-

/dx = log (a + x) into a series.
a + X

dx /I X a? x^ . \ ,
. „

Since =1 i + -,
i + &c- ) "«, "we shall

have log (a + «.) = ^ - -, + ^3 - ^, + &a + C,

by putting a; = in this, we have log a=. Qi\ consequently,

we have
qrt ryi^ nfi /v/*

log(« + x) = \oga+--^, + -^- --- +,&c.

Eemarks.—It is easy to perceive that this development

can be immediately obtained from log a, by changing a into

a + «, and then developing log {a -\- x) according to the

ascending powers of r, by Taylor's theorem.

6. To find the integraiy*|/lzif!J dx = f-j ^ ^a^

in a series.



ILLUSTRATED BT EXAMPLES. 415

By converting \/{l — dV) into a series arranged according

to the ascending powers of x, we have

e'x' ,
ax —

•^ ^ 1-i

—-r- ?: = sin ""'a;, and that formula IV., at
|/(1 — ar)

p. 382, gives

/ifidx r „,^ ,,_! ,
834/(1—0!-) 1 . ,

and

/ar' 1 3 \ ,. ,,13. ,

and fx'{l-x')-^dx =

/a!= 1 5 3 1 3 5 \ ,-. -5 13 5. ^

-le +4-6*+2-4-r)''l-^ + 2-4-6^'^^^>

and so on ; by collecting these results, we shall get

/• /\ g^x^ e-/l 1 \

J V -YZr^ ^^ = Si'o.-^x + ^y^x^^-x'')- ^%m.-^x\^

274114^ + 2-4 "j^^l-^")- 2-4 ^^^^j +2:^6

J/.^= ,15. 1.3.5 \ ^.^ ,, 1 3 5 .

J
1 .

lie
+4-6^ + 2-A6^)^^^-^)-2-4-6^^^^1 +'*''•'
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for the integral ; whicli needs no correction, supposing it to

commence with x.

EEMABK&—It is easy to show that the ] •receding integral

represents an arc of an ellipse, reckoned from the extremity

of its minor axis.

For let y = - 4/ (o' — 0^) represent the common equation

of an ellipse, then if e equals the ratio of the distance of the

focus from the center to the semi-greater axis, we shall have

J =: a |/(1 — e^) for the half minor axis, and the equation

of the ellipse reduces to y = 4/ (1 — e") |/ (0° — a;^) ; whose

differential gives dy = — ., ^—^s - Hence

dy^ + dj? — d^ = ^^—5—^-^ +ds^ or dz =y —^

—

j^dx,

which agrees with the preceditig differential equation when

= 1, and it is clearly the differential of an arc of the

ellipse reckoned from the extremity of the minor axis.

If we put £B = a sin 1^ we shall have dx ^^ a cos <^<70,

which reduce the differential equation to

dz -^ a Vl — e- sin^ (j) x d(t>;

if we put a = 1, the half major axis = 1, and we have

ds = Vl — ^ sin^ . e?(^
;

or representing V 1 — i' sin^ ^ by A, we shall have

f^d^.

which is an elliptic function of the second kind, according

to the notation of Legendre. (See p. 19 of his Exercises,

" De Calcul Integral")
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o- • J ^ 1 — COS 2<^ ,
Since sin^ ^ = -^ , we nave

l-e=sin^^=l- 1° +
I'

cos 2^= (i-|') (l+^ cos
2^),

do
or putting 2i^ = 0, we have d<j) = ^; consequently, we shall

have

d3- v'(l- 6= sin= <A) tZ0 = r ^- X |/(l+ ^^-^^ cos 0^^,

or putting ^ = c, we shall have

dz y ^-5-- i/l + c cos cZa.

By the binomial theorem,

y' (1 + cos 5) = 1 + jr c cos — - c^ eos^ ^ + r? "' cos' fl —^0 io

_|_ ,. cos^ +
2^^

c= cos^ -, &c.

;

consequently, multiplying the terms of this by rf6, and

taking the integrals from 9 = to = tt, we shall have

y(l+.COS«)<^.=.(l-^."-j^C^-j^g^C«-&C.),

which gives the quadrantal arc of the ellipse, reckoned from

the extremity of the minor axis.

= / 2 ^2

i 16 (2 -«^/ 1024(2-6=)* 16384 (2 -c')" /'
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If we apply this formula to find the perimeter of the

ellipse, whose major and minor axes are 12 and 9, we shall

have e'^l-^^^ ^= 0.4375,
4- 16

and thence ; = 0.28

;

2 — e-

hence, we easily find 0.99501, for the sum of the first three

terms, within the parentheses, of the preceding series ; and

since V ^- = 1/078125 ^ 0.88388,

we have 0.83388 x 0.99501 = 0.87947.

This is the same result that Mr. Young has obtained at p.

116 of his "Integral Calculus," from the formula at p. 415,

when taken between the same limits, or from a? = to a; = 1,

which gives

TT / 1.1 „ 1.1.1.3 , 1.1.1.3.3.5 , . \

for the length of the quadrantal arc of an ellipse when its

half major axis is denoted by 1 or unity. Mr. Young ob-

tained his result by calculating the first eight terms of

this series, whereas the first three terms of our series

have given the same result, which clearly shows that our

formula is far more convergent than the preceding for-

mula, which is the formula commonly used for the compu-

tation of the elliptic quadrant. It is easy to perceive that

we shall have

35.5^ X 24 X 0.87947 = 66.31032

for the perimeter of the ellipse, which differs but little fi-om

Mr. Young's result.
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(12.) We now propose to show how to apply series to the

computation of integrals of the forms

JX"'dx"', Jx"dx'', &c.,

which have been partially considered at pp. 312 to 315.

/dx^ 1
:; 5 , we convert j ; into a series,
1 — or 1 — ar

'

-^ 5 = 1 +0? + X* + X' +, &C.,
1 — x'

and thence get

5 = I dx
I
{dx + x^dx + x*dx + x'dx + &c.)

= / Ixdx + -^ dx + ^ dx + &c. + Cdx)

we also have

= J ^y '^X + 2T3^ + 2745* + 2.-Or7^ + "^^^ + ^)

r, la? 1.1.1 , 1.3.1.1 . 1.3.5.1.1 , , r. r.,\

_ «' X? 3x' 1533° Ce'

-2.3+ 2.31.5 +2.4.5.6.7 + 2.4.6.7.8.9 + *°-+
2 +^^+ ^ ^

and it is evident that each successive integration introduces

a new arbitrary constant ; consequently, the number of arbi-

trary constants must equal the number of successive integra-

tions of the proposed differential.
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In like maimer, if we tave

/ xd3? = f dx I dx
I
xdx,

by representing it by y, we have

y = fdxfd. (^+ C) ^fd. (^ + C. + C)

= ^ + ^ + G'x. + 0";

wbich clearly represents a curve of tbe parabolic kind of

d^v
the fourth order. Hence, if we have -i-f = X, representing

/ Xdx by Xi , / Xjifa; by Xj , and so on, we shall clearly

have ^3 = fxdx = Xi + 0,

^^^ = f^idx + fcdx = Xa 4- Cja? + 0^

,

and so on, to any required extent.

2. It is manifest that these processes are applicable, whether

the expressions to be integrated are of algebraic or transcen-

dental forms. Thus we have

/ cos xdj? =^ I dx I dx I cos xdx =

dx J (sin X + C)dx = — sin a? + -^ + Cx + C;

also J edo? — fdxJdx (f + C) =

Jdx {f + Ca; + C) = e" + -|^ + C 0! + 0".
'
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3. Mr. Young, at p. 91 of his " Integral Calculus," gives

''^''1.2 n + Ui»jl.2....» +
»^

toji:2 " + ^
+'*°-'

in wMcli tlie development is made according to the ascending

integral powers of », by Maclaurin's theorem; ( / Xdia;''!

denoting the last of the arbitrary constants according to the

preceding methods of development, I / Xcfa!"~M denot-

ing the last constant but one, and so on until there are no

arbitrary constants; noticing, that the terms within the

parentheses stand for the values of the corresponding quan-

tities, when aj, in them, is put equal to naught

EXAMPLES.

/' dx*'
—7z -^ according to the ascending

powers of x.

Since the binomial theorem gives

Vl + x' 2 2.4

the development is
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/'^='^-+°-+«'^^4 +
yr+^ " *

"^ ^ ^ ' 2 ^ ' 2.3 ' 2.3.4

1.3^
,

2.3.4.5.6 ^ 2.3.4.5.6.7.8

+ &c. + Ci ^ + Cj -„- + C,x + O4,
2.3.4 2.3.4.5.6 ' 2.3 ' '2

as given by Mr. Young.

2. To develop /. sin a-rfx^ according to the ascending

powers of x.

/' x^
sin a3(iar' =03 + G^x + Cj ^ + cos »

= cos a; + Ci 2 + G^x + C3,

as in Young.

3. To develop 3^ according to the ascending powers of x.

Here, we have
x'

y = a + Csa! + C, g- + Ox 23

,

which, in the language of curves, denotes a parabola of the

third order.

4. To develop / e'd:)?.

e'da? =63+ Cas; + Gi-^ + e'.

(13.) We now propose to show the use of arbitrary con-

stants in finding definite integrals by series or otherwise.

According to what is shown at p. 265, the notation

/^ dx _ n

o^(l-s?)r 2
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signifies that the integral being taken from x = to x=l,

gives n = one-fourth of the circumference of a circle whose

radius = 1, for the result or value of the integral contained

between the preceding limits ; and a like notation is to be

used in all analogous cases of definite integrals.

If we take the integrals indicated in example 7, at p. 386,

from a; = to cc = 1, when m stands for an odd or even

positive integer ; then, for m odd, we have the results

/•I xdx _ r^ xPdx 2 /•' afdx _ 2.4

J 1/(1 —O ~
' J "Vil -'^) ""

3 ' y o./(l-a;=) ~ 3^5
'

/*! xVlx _ 2.4.6 r^if^^dx _ 2.4.6... 2«

J of(l-^) ~ 3.5.7 J 4/a-jc-^) ~ 3.5.7... (2«+ l)

'

by using 2n + i for to, and by proceeding in like manner

for m, even, we shall have

dx TT /*' x'dx 1 7T

)

^"
2 • 2

'

y o'7(rir^'^ - 2' J o7(r-

J oVl — x'~ 2A' 2' J 0,

/:

) 4/(1-35-) 2.4.6 '2'

"^ oir'"dx _ 1.3.5.7. . .(2?t-l) n
o^/{l-x») ~ 2.4.6.8 . . . 2n " 2'

by using 2n for ot.

It is easy to perceive, from a comparison of the preceding

values, that if n is large we shall have

J iyii^x') - J o-7(T~^) ^^^^^'

1.3.5.7 (2w-l) TT _ 2.4.6 2n
°^

2:4.6.8 2n 2~ 3.5.7 (2;i +T)
'^®^^^^'

, „, TT 2.2.4.4.6.6 2w.2^i
or we shall have „ = „ q e g >7

—
th t^-t^^; rr nearly

;

I

2 1.3.3.5.5.7...(2/i — l).('i7i + l)
•'^

'
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and bj supposing ??, to be uulimitedly great, or infinitely

great, we must evidently have

r. _ 2.2AA 2n.2n,

2 - 1.3.3.5.o....(2a.-1).(2«. + 1)
^"'^"'^ ^'

for the length of the quadrantal arc of a circle whose radius

= 1 : where it may be noticed that this expression seems to

have been first discovered by Dr. Wallis. (See Young, pp.

97 and 98, and Lacroix, vol. iii., p. 415.)

Eemabks.—Mr. Young, although he has with reason

objected to the manner in which the formula of Wallis is

frequently written by English authors, yet, at p. 97 of his

work, he has written

2.2.4.4.6.6.8.8 „ '= • . j i.
2.2.4.4.6.6.8.8

1-3.-3.5.5.7.7.9.9 ^°" 2'
^^steadof 133557^,3 ,

which- is its proper fonn when the numerator and denominator

each consists of eight factors ; noticing, that the numerator

and denominator of the fractional forms of -^ must each

consist of the same number of factors as the preceding forms.

If we write the successive approximate values of ^ , after

the factors common to their numerators and denominators

are rejected, we shall have

2.2 _ 4 _ 2.2.4.4 _ 64 _ 19 2.2.4.4.2.2 ^1
1.3 ~ 8 ~ ' 1.3.3.5

~ 45 ~ '*' 45' 1.1.1.5.5.7
~ "^ 175'

2.2.4.4.2.2.8.8 _ . , ^ ,
2.2.4.4.2.2.8.8.2.2 _

1.1.1.5.5.7.7.9 ~ •^•*^ +' 1.1.1.1.1.7.7.9.9.11 ~ ' " +'

and so on. From these results it is clear that the successive

terms approximate very slowly to the length of the quad-

rantal arc, the last result being correct only to one place of

decimals.
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For another example, we will show how to find the de-

.

'

J-.

Because 1 — ck* == (1 — oF) (1 + cb^), we shall clearly have

0^(1 -a!*)
- y ol7(r^^

X (1 + a!)

~ J 0^(1 -a!'*)
-

2 ^ oy(1 - a!=) + 2:3 y oy(l -ar")
-

1.3.5 r xHx .

2X6 J s/(i-x^) +' '^°-

Because, from what is shown iu the preceding examples

we have

r^ dx _ 2 /"
J oi/il — a?)

~ 2' J

f.

X^dX 1 77

|/(l-a!=) 2'^ 04/(1-3;^) ~ 2' 2'

aj^'cfa) 1 3 w

oV(l-a!^) ~ 2'4'2'

and so on, we get by substitution

r eix \, (iv /1.3V /1.3.5V 1

-

J o7(r=v) =
u
- y + fc; I2A6J

+ •^"•1 2-

Vx (1 — ar)

By putting y = 2|/a! we get c?^/ = — , a!= =
^|j

;

consequently,
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dy

J ^Vx{\.-x^ J „ / L _ /y\*j J 0/(1 _ _.')

1 Vby putting ^ = 3.

Hence, from the preceding example, we shall have

which is twice the integral found in the preceding example.

(14.) We will terminate this section by showing how to

sum series, or to find their generating functions, by means of

the preceding principles.

The processes here proposed seem to depend, for the most

part, on transforming, by means of the integral or differen-

tial calculus, the proposed series into a new series, or in find-

ing a new series, such that its sum or generating function

can be found, so that the proposed series may be supposed

to have been derived from it.

EXAMPLES.

1. To find the sum of the series

« = « + 2a^ + So;' -f . . . . + waf.

Multiplying the members of this equation by —- and

taking the integrals of the products, we have

J s— = J (dx + 2xdx + Z3?dx + &c.)

= X + x' + ar' + +»",
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"whicli is clearly a geometrical progression ; whose sum, by

the common rule, clearly equals — , and thence we

/^^ 2; a?"
"*" ^

s — = —;
. To And s, the sum of the pro-

X \—x
posed series, from this, we must remove the sign of integra-

tion / , by taking the differentials of its members, which

dx dx — (n + 1) x" dx + nx" +
' dx

give s~ = ^ /- :--
,° X (1 — xy '

or, by a simple reduction, we have

_ 33 — («, + !).-»»+ 1 + ?liK" + =>

2. To find the genei-ating function of the same series con-

tinued indefinitely.

It is manifest from development, that we shall here have

s — -p. r^ ; which is clearly the same as to suppose the

definite parts, or those that depend on «, in the preceding

sum, to destroy each other, and to put s — tz. r^

3. To find the generating function of the series

. x^ x^ X*'

l + " + M +2:3 + 2:3:4+
^^'-

Denote the sum by y, and we shall have

y = 1 + a; +
I

-f 2^ -f , &c.

;

whose differential coeflicients give

£=1 + ^+2 +2r3 + *^- = 2''
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consequently, we shall thence get — = dx. By taking the

integrals of the members of this equation, we have log y = a-,

which needs no correction, supposing it to commence with x,

since x — gives y = 1, whose log = ; consequently, put-

ting e for the hyperbolic base, we shall, by the nature of

logarithms, have y = e^ and thence

«" = 1 +a3+^ + ^+,&c.,

as required.

4. To find the siun of

ajn +:i ^.n + 3 jj,n + 5

"*"
9 9 /•-» _i_ 5\ "'" O S K /»,

I x\ +) &C.n+1 ' 2.3(n + 3) ^ 2.3.5(w + o)

From (J"), at p. 51, we have

e^= 1 + SB + - + — + ~—+ &c-^ ^ 2- 2.3 ^ 2.3.4.5
^'*^°"'

and putting — a; for a; in this, we also have

X'
rS

e-^ =1 — a!H 1- &p^2 2.3
^'*-'="

whose half difference gives

gX g-x ^ jjj3 ^fi

2 ~ ^ - ^+ 2:3 + 2^4:5 +'*°-'

and multiplying the members of this by x"-^ dx, we have

^j e--it?'~^dx —
-^J er^ x''-'^ dx =

^T+l ^ 2.3(n + 3) ^ 2.3.4.5 {n + 5)
+' '^'

since the method of integration, explained at pp. 391 to

393, reduces the equatfon to
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g = - I e^a3"-i(ia;- / e^x"~'^dx

= H «" [a!""* — (n — 1) £»'•-=+ (n - l)(w — 2)a5"-'— &c.] +

L-^ [a!"-i+ (n - I)*"-'' + (w - 1)(« - 2) a;"-' + &c.]
;

consequently, from equating the values of s, we shall have

^ e^ [a,"-i _ (ra — !)(»'—= + (,1 _ l)(n — 2)a!"-' - &c.J +

\ e-" [«"-' + (n - 1)«"-' + (?i - l)(n - 2)a!"-' + &c.J =
2

n + 1 ' 2.3(»i + 3) ' 2.3.4.5 («. + 5)

which needs no correction, supposing its members to com-

mence with X. If we put m = 2 and a; = 1 in this equation,

we have .-i =. 1 = 1 +^ + --^_ +, &c.;

which is the same result that Mr. Young has found at p.

100 of his "Integral Calculus," from which the example has

been taken.

5. To find the generating function of the series whose

<j[eneral term may be expressed by the term

1_

(jP + qn) {r + sn) &c.

'

in which n stands for the number or place of the term in

the series.

Because , _ = a;' ± «« +83^ ±, &c,
1 T »

if we multiply the members of this equation by dx and take

the integrals of the products, we shall have



430 DEVELOPIIEXTS IX SERIES.

1 / aj«

« i/ 1 T a;

£ 2 + 1 £+2 E + 3

d« = —— ± ——75- + —-nr ±1 "^c-

;

consequently, if Xi represents the sought function, we shall

have
B. p+i p.

XI , 359 x^ X''
dx = ± -r—

I

— ±,&c.,

uave

a J 1

which, since its right member vanishes when a; = 0, we shall

suppose its members to be so taken that they both commence

with X, and extend to a; = 1. Thus, if j? = 0, we have

-c- 1 /* — ^a; 1 1 /, . a; af aj' .

Xi= / = - -log (1 -«) = - + H- + 5- +M;qJ 1 — x S
' q 2q aq

when we take I — x for 1^^ x; and if we put a; = in the

members of this they both vanish, while if we put a; = 1 in

the members they reduce to

i log = infinity = l(l+| + l+ &c.),

a well-known result Again, if we take 1 + a; for 1 ^ a;

•we shall, as before, by putting jt? = 0, get

or log2 = l--- + g--+,&c.

Eesuming,

1 r -J -+' -"' -+3„ \
I
XI ax XI XI xt

.

'~qJ V^x - YVq ^ JT^q "^7T% ^' '

then by multiplying its members by x' 1 dx, and in-

1 /* £_£_!
tegratiug by putting Xj = - / Xi a;» v dn, vre get
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- + l - +J

{p + s) (-'• + s) ii> + H) kr + 2«)
^'

Multiplying the members of this by as " » c?aj,

and integrating, we shall have

1 C J--^-i
and putting X3 = - / Xo a?" " dx

t

+ 1 ^+2
~

(i'+?) (^+*') (^+'") (^^+2;?) l^+2«) (<+2i«) ^' *'' •

and so on, to any required extent.

Since Xj = - / Xi aj » « c?a;,

s «/

when there are but two factors in the denominator, we get,

from substituting the value of Xj,

1 r r_£_i
, / a;?— I X' 1 dx I

qs J J 1 ^ X

which, integrated by parts, gives

dx;

dx_ r_^!_ dx L___ /*^_

for its value. Supposing the integral to be taken from

a; = to a; = 1, we shall have

1 /* L-E-i
- / Xi a;' 1 dx —
s J

p_ p /*' £.

a?" « r' XI dx 1 / ajs ,
/ :; -, r- / dx (a\
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An example or two may serve for illustration.

1st. To find the generating function of the infinite series

-^'=1:4 "2:5 + 3:6" 47+''^°-

The series is clearly satisfied by putting^ = 0, q — 1, and

r= 3, «= 1, and thence {a') becomes

-^J = 3 / 1 , —of 1—,— «»' = o log 2 — T-: + const
3./ ol + a? 3*J ol+a; d ° 18

2d. To find the generating function of the infinite series

Since^ = ~ 1, q — 2, and r = 2, « = 2, (a') gives

_ 1 r^x~^dx 1 /" x^dx
^ ~ iJ ol + a5

~ 4./ oT+^*

To find the first of these integrals, we put y = a;* and thence

get rfy = ^ a;"' dx — x = y^,

and thence the first integral becomes

1 r^ 2dy TT - 1 /•^aj^rfa, 1, „

n- 1
consequently, ^2 = t — t ^og 2 equals the generating func-

tion of the series, or Xj = 7 — log ./ 2, as required.

6. "We now propose to show how to find generating

ftinctions that may be reduced to the form

*=i^^i~T%+^3^±"^^-
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We shall assume the series

axi 0X1 CXI
± —r-o- + —T-r- ±' *^°-i

i? + <? i>+22' jO+32'

whicli vanishes when a? = 0, and becomes the proposed series

when aj = 1. Hence, by taking the differential of the mem-

bers of the assumed series, we shall have

qds = ax^dx ± Ix^ dx + cx<i ± cfe, &c.,

whose integral being taken from £b = to co = 1, gives

(aass ± 5aj« + cxi ± &c.) cZaj {b),

which will clearly give the value of the proposed series

when the integral can be found.

Thus, to find the limiting function of

12 3 4,

in which 1, 2, 3, &c., represent the letters a, 5, c, &c., while

3, 4, 5, &c., are represented hjp + q, p + ^q, p + Zq, &c.,

it is manifest that we must have^ == 2 and 2' = 1, since — is

p_

used for ± in the example; and that xi maybe moved with-

out the parenthesis, we shall have, from (5),

/I p_

{a—J)X + ca? — dx^ + &c.) dxi dx,

which the substitution of the preceding values of a, i, c,

-rr— -„ dx.
(1 -|- xy

19
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By taking tlie general integral, we have

s = x-2log{l+x)-^ + 0,

which, being taken from a; := to ar= 1, gives 5 = 4 — 2 log 2

nearly, for the generating function of the proposed series.

7. We now propose to show how to find the generating

function of a series of the form

- 1
,

1 1

Assuming

^+1 ^+2 ^+3
_ x^ x^ xt

* ~
{p + q)m "^

i_p + 2q)m' + {p + 3q)m' ^' °''

then, as before, we shall have

qds = — dx ± —3" dx -\ r- dx ± &c.

—

= ( ± — 2 -I 3 ± &C.)a3Tcfo; = —— dx,\m m^ rri? I ^ -r ^ 'm^^x

whose general integral is

X 1 dx

^li

dx (c).

consequently, we shall have

. = ! T-A
q ^y »i ^ as

Thus, to find the generating function of

_ 1 1 1
0,

* ~ 2.2 3.4 + 1:8 '

^°-

Here,p and q are each 1, and m, m^, m', &c., are 2, 4, and 8,

&c. ; consequently, since we must clearly use + for ^, we have
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qs = I -^ dx, and tlieace qs=^x— 2 log (2 + a;) +
.*

is the general integral, which, taken between thie preceding

limits, gives

5 = - / -^— cZaj = 1 + 2 |/2 — 2 4/3,
2'./o2 + a3

^ y r-
as required.

8. To illustrate what is sometimes called Lorgna's metliod

of series, we will apply it to one or two examples.

1st. To find the generating function of the infinite series111.
' = i:2-2j + 3i-'^°-

Because we have

^^ r dx a?' ar'

^^ = yrT^ = ^-2 +3-'^°-'

by multiplying the members of this by dx and integrating,

we have

^ -, „ r ^ r dx a? 3? »* .

^'^^ = ^= = y '^^J rr^ = 12 - 2:3 + 31
-'*^°-

By talcing the integral by parts, we have

/'^^/rf^^''^°s(^ + '')-/r dx
+ x ° ^ ' J 1 + X

= {x + l)log(l + x)-x;
consequently, we have

Cu Su iJC

(« + 1) log (1 + a?) - a; = j-^ - g^g
-f- g-j -, &c.,

which needs no correction, supposing the integrals to begin

with X ; and thence, by putting 1 for x, we have

21og2-l = A_J_ + J__,&e.,

for the generating fanction of the given series.
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2d. To find tlie generating function of the infinite series111,- -, &c.~ 1.2.4 2.3.5 3.4.6

Proceeding, as in the preceding example, we have

* = A^'^ /^^Iyt-^ = lii - 2:3:5 + sie -' *°-

From the last example we have

fdx f—— =(« + !) log (1 + a?) - X,

and thence we shall have

fxcUfdx/y^^ =fx{x + 1) r7.clog (1 + a;) -fx" Sjx
;

h, integrated by parts, gives the integral

l^ x'\, ,, . X' Cin? ,

a?-\

*=(3+2)^°S(^ + ^)-3-y(3 + 2)r

+

which, integrated by parts, gives the integral

dx

Tx'

and thence the integral reduces to

(?+^-|)^°S(l + ^-
4iTi? a? X

T ~ 12
"''

6

of ^ x' .

1.2.4 2.3.5 ' 3,4.6

which needs no correction, supposing the integral to com-

mence with x. If we put a; = 1, we have

2, „ 13 1 1,1 ,
* = 3 ^°S2 - gg = ^^2;^

-
2;3;5

+ 3;^ -, &c.,

for the generating function as required.

Sd. To find the generating function of the infinite series

1 V 113^ • r. 3-.5^

214^ + 2-.4-.6- ^ 2l4-.6'.8'
"^

2l4^.6l8ll0^
"*"'
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From what is done at p. 387, we easily obtain the fommla

p x-"dx _ 1.3.5 (2?i — l)7r

J 0^(1 — «-)
~ "2.4.6 2ft 2

'

in which n is an arbitraiy positive integer, which, by putting

2, 3, 4, &c., successively, for n, enables us, by representing

the generating function by s, to write the form

/:
1^3^ r x'dx

+
2.3.4.5.6.7.8-' ^{1-x^)

S\5^ r x"

2.3.4.5.6.7.8.9.10./ ^{1-a?)

whose integrals, being taken from x = to x — 1, will

equal the proposed series multiplied by ^

.

By taking the differentials of the members of this" equation,

it is immediately reduced to the form

2^ ^^-^ ""''*"'
2:3:4 + 2AiX6 +

2.3.4.5.6.7.8
"^

2.3.4.5.6.7.8.9.10
"^'

'

and by differentiating the numbers of this equation three

times successively, regarding dx as invariable, we have

, , / a? 1^3^ »» 3=..5- x' „ \
d:^ [«>+^ + 2X4.-5 + 2.3.4.5.6.7 + H'
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Since the riglit member of this equation (between the paren-

theses) is the same as sin
-

' a-, we hence get the equation

whose integrals give

By taking the integral of the members of this equation,

we have

and taking the integral of this, we also easily get

\ fd.i^ 4/(1 - a?)) = /(- sm-'x + x) dx
;

whose integral again taken becomes

"" ds , ,^ ^^ ,
a?

cos xdx
or

'r _ 2 r x'dx _ 2 /•

J U 2 V (1 - «')
~ ^J

'i2^/(1 — £C^) TtJ y(l —it")'

and so on.

Remarks.—The substance of the last six pages has been

taken from Young's "Integral Calculus," from pp. 99 to 111

inclusive. Mr. T. shows, at p. 108, in a manner very

analogous to that used by us in the solution of our last

example, that the generating functi(JH of the series

JJ2
Q2 g2 32 g2 jra

g
-i



SECTION Y.

INTEGRATION OF DIFFERENTIAL EXPRESSIONS WHICH

CONTAIN TWO OR MORE VARIABLES.

(1.) A DIFFERENTIAL of a function of two or more varia-

bles which is derived from the fiinctioa by taking its diflPer-

ential, supposing the variables all to change, is said to be

complete or exact / while, if the differential is taken on the

supposition that the variables do not all change their values,

it is said to be incomplete, inexact, or partial.

Thus,

, , ,— du ydx xdu — ylr. «
ydx + xay = dyx, -^ — ^-^^ = -

" „-^— = d-,

are complete or exact differentials, while ydx, xdy — ydx,

are incomplete or inexact differentials, provided there is no

assigned relationship between x and y ; other examples of

exact differentials will be obtained by reversing the exam-

ples at pp. 7 to 12.

(2.) It is easy to perceive that if Mdx + ISdy is an exact

differential of two variables x and y, that its integral may
be found by the following

RULE.

1. Take the integral / M.dx on the supposition that y is

constant or invariable, and add to the result the integral of

all the terms in ISdy which are independant of x or do not
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contain x ; tten the result, increased by an arbitrary con-

stant, will be tbe complete or exact integral.

. 2. Or we may take tbe integral / Nc?y, on the supposition

of the constancy of x, and increase the result by the integral

of that part of Milx which is independent of y, and an ar-

bitrary constant for the same integral as before.

EEMAEKa—It clearly results from the rule, that when

Mdx + Nt^y is an exact or complete diiferential of a func-

tion (M and N being functions of x and y) we must have

—r- = -r- ; which is called Euler's Criterion or Condition
dy ax

of Integrability of the differential McZa? + N«?i/ (see p. 22)

Hence, since / Mrfa; = / NcZy, we have

d I
Mclx

dy
-•^'

and from -r- = -^ , we have aJM = -y- dx, which gives

N = I -=— dx; consequently, we must have

d I Mdx

fT'^'''dy J dy

which is agreeable to Leibnitz's rule for differentiating

under the sign / ; noticing, that the right member of this

equation is independent of the first integral, or that with

respect to x.

(3.) To illustrate the rule, take the following



/('

WITH TWO OR MORE VARIABLES. 4:41

EXAMPLES.

1. To find the integral of {^xy — if) dx + (3,»^ — 2xy) dij.

Since x enters into every term of the coef&cient of dy^ it

is clear, if the proposed differential is exact, it will be suffi-

cient to find the integral / {^xy — y-) dx, supposing y con-

stant ;
consequently, 3j3^ ;/ — y^ a? + C must be the integral,

which is evidently true, since it equals the integral

(3ie^ — 2aj?/) dy,

rrgarding x as constant.

Eemark.—^Because, in this example, M and N are repre-

dlL
sented by ^xy — y^ and Sa;^ — 2a;y, which give —z- =^6x — 2y

and
-J-

=: Qx — 2y, the criterion of integrability, -,— = -,—

,

is satisfied.

2. To find the integral of (3x^ + 2axy) dx + {ax^ + Sy") dy.

Here / (3 J' + 2axy) dx — a?+ ax^ y,

to which adding the integral of Sy^dy, the part of {ax^+ dy^)dy

which is independent of x, and we have ar' + asify + ^ + C,

after adding the constant C, for the exact integral.

The same integral is also found from the integral

J
{ax'' + Sy'-) dy - ay?y + y\

by adding the integral 3 / x'dx =: ar' + C, the integral of the

part of (3a?^ -)- 2a»y) dy which is independent of y, to it

The criterion is also satisfied.

19*
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3. To find the integral of VJ^I^l = 4^-^, - -^ .

.

Here tLe integral

dv

C ydx _ C y __

J y' + id' J -^_^^

tan-i- + C;

y
and the integral

dy

f-^-.- /"l^^tan-^ + C,
J y + x^ J j^^ y

y'

the same as before.

Cudos '

4. To find the integral of ,, „ ^ + ydy.^
^/{a' + X-) ^ ^

Here M = —;-:, ^r and N — >/, which, since they do not
^ {a' + x')

^' ''

contain y and x, give -j- — and -j- = 0, -which, being

naught, may be regarded as satisfying the criterion of in-

tegrability.

Hence, the proposed difierential maybe regarded as having

an exact integral, v^rhich is also evident from principles here-

tofore given, since each term of the proposed differential is

clearly the function of a single variable. Indeed, the integral

r x-dx _ _ X 4/ (g^ + a^) _ a' r dx

_ x^/ja' + x')

and since / ydy = ^ , the integral of the proposed differ-

ential is of course found, after the addition of the arbitrary

constant.
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5. To find the integral of

(Zaa? + 25a!y) dm + ha?dy.

Here we have

/ M.dx = / {Zaa? + 2lxy) dx = as? -\- Ix^y + Y,

in which Y stands for the arbitrary constant in the inte-

gration with regard to x while it may be a function of y,

since y has been supposed to be constant in the integration

with reference to x.

To determine Y, we take the differential of the preceding

equation, regarding x as constant, and thence get

d fM.dx T^ r

,

d IM-dx,
N = -A +~- or Y = '

'^-^ -^
r

I
d Mdx

dy dy J \ dy

consequently, since

d I Mdx
'S = ha? and —^ = M,

dy

d
I
M-dx

we have N —, = 0.
dy

Hence, the sought integral is reduced to

^ „, d
I
Mdx

JUdx + J (J^
^-

j
dy=aaf+ My + ;

which might also have been expressed by the form

r ri ^ f^^y\
j ^dy + _/

(
M "—

1 dx =bx'y + aa? + Q,

the same as before.
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Eemark.—"We have performed this solution according to

the common methods, in order to show that they are sub-

stantially the same as our rule.

(4.) It is easy to perceive that our rule may be extended

to find the integral of a differential consisting of any number

of terms, like Mdai + Ndi/ + Vds +, &c., by adding to the

integi-al' / Mdx taken relatively to x, the integral of all the

terms in Nrfy which are independent of x, and then adding

the integral of all the terms of Prfe that are independent of

either x or y (or both of them), and so on to any required

extent. Thus, the integral of

ydx
_^

{x + 2ay) riy _ {xy + af) ^^
z z s°

/ydx V C 1 V^-— = - I dx = ^—,
z z J z

lf2ydy = "^^ and (., + ay^) /- f = ^^-±^\

whose sum, corrected by the addition of an arbitrary con-

stant, is
'— — + C, which expresses the integral as re-

quired.

If M.dx + "Edy + Po?3 +, &c., is the differential of some

function of cc, y, s, &c., of u, we shall have

,, dn -.T du ^ du .M=:^, lSr=T-, P + _- &0.,
dx dy dz

which give

dM. d-u dlS <Ixi, dU d^u

dy dxdy^ dx dydx^ dz dxdz^

, dP _ (Pu dN _ ^u dF _ dhi

dx ~ dsdx ' dz ~ dydz ' dy
~~

dzdy ' °'
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d?u 6?u dru (Pii

dxdy dydx ' dxds dzdx '

and so on (see p. 22), we shall have

dM _ (iN dM _dP (^N" _ ^ ^.

dy dx ' ds dx ' ds dy ^

for the Criteria of Litegrahility of a differential of the pre-

ceding form ; which, being supposed to contain n different

variables, will give ,—- equations, like the preceding,

in the criteria of integrability, since by the known principles

of combinations, —^1—9— shows how often two may be

taken out of n different things.

It is hence clear that any differential which satisfies all the

—hj—^

—

- criteria, can be integrated by the preceding method,

and its integral will be exact ; but if the criteria are not all

satisfied, the integral can not be found, and must be incom-

plete or inexact; hence the importance of examining the

conditions of integrability before we proceed to integrate the

equation, becomes too evident to require any further notice.

(5.) Supposing Adx + Bdy + Gds +, &c., to be an exact

differential, or one that satisfies all the criteria of integra-

bility, and, at the same time, suppose each of its coefftcients,

A, B, 0, &c., to be of n dimensions in terms of its variables,

«, y, s, &c., or, which is the same, suppose the equation to be

homogeneous, the degree of homogeneity being n ; thtin, we

,1 +1 ^ V • ^ 1
Aa? + By + Cs + &c.

propose to show taat its integral = — —^^
provided % is different from — 1.

Thus, since y, s, &c., may clearly be expressed by xy', xz'^
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&c., because the diEferential may evidently be supposed to

have been obtained by regarding x alone as variable, it must

be expressed by the form Adx + By'dx + Cs'dx +, &c.

Because, from the nature of homogeneity, each term of this

differential must be supposed to contain the factor x"dx,

which, integrated by the rule at p. 254, gives for the

common variable factor of the terms of the integral ; conse-

quently, the integral must evidently be expressed by

Ax + Bxy' + Gxs' + &c.

n + 1
+ const,

. , ^ Ax + Bi/ + Gs + &c.
, _,

or its equivalent, ; \- 0,
n + i

C being the constant.

It may be noticed that if ?i = — 1, the integral

I x^dx — I — = log X
;

consequently, when n = — 1, it results that log x must be

a factor of the integral of

Adx + By'dx + Cs'ds +, &c.

Hence, when n, called the index of homogeneity ^ is dif-

ferent from — 1, change dx, dy, dz, &c., severally into

a;, y, 2, &c., in the differential Adx + Bdy + Gdz +, &c,

divide the result by the index of homogeneity, increased by

unity, and add an arbitrary constant to the quotient for the

integral.

EXAMPLES.

1. To find the integral of (3aj= + 2axy) dx + (a,r= + 3/) dy.

Here the index of homogeneity is clearly 2, being the sum
of the indices of x and y in each term of the differential

;
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consequently, since the differential is clearly integrable, by

changing the differentials dx and dy into x and j/, we have

(3*^ + 'iiaxij) X -{- (aJ' + Sy-) y. Performing the requisite

multiplications, and uniting like terms of the products, we

have Sa;'' + %ad^y + S^/', which, divided by 2 + 1 = 3, gives

~-~-^ =«? + a3?y + y\
o

and adding the constant C to this, we have x^+ax^y+y^+ G
for the integral of the proposed differential.

2. To mtegmte (3x^+2hxy—Sy^)dx+ {ix^—6xy+ 8cy-) dy.

This being both integrable and homogeneous, we have, as

before,

_ +0 =

»' + hx'y — Zxy"- + cy' + C
for the integral.

3. To integrate i^y'^x + Ztf) dx + {^o?y + 9,w/^ + 8y') dy.

The answer is y"^ + ^"^x + 2^/* + C.

, „ . ydx (x — 2i/)dy [y^ — ayihdz
4. To mtesrate ^ 1- ^^ -^^—^ + ^—

.

Since the indices of x and y are positive, while those of s,

in the denominators, are to be considered as negative, it is

manifest that the index of homogeneity is naught. Hence,

it is easy to perceive that the integral is expressed by

3

5. To integrate the integrable and homogeneous differential

dx /^ X

V V(x'+yy yVix' + y') \ V{«? + yy y

Bj putting y = xy\ the differential is readily reduced to
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dx dx d.v dx
+

whose integral may be expressed by

log a; + log C = log Gx.

If C = C [1 + V (1 + y'% we bave

log Cx = log C [a; + r» ^'(1 + y"j] = log C [.« + Vi'^+l/'-)],

wbieb is tbe well-known form of the integral as determined

by the ordinary process of integration ; noticing, that the

integral appears under quite an undetermined form, on

account of the terms that have destroyed each other, agree-

ably to what is said at pp. 445 and 446, the index of homo-

geneity in this example being — 1.

6. To integrate the integrable and homogeneous differential

xdy ydx

or +~y^ " a? +~f

'

Here, the index of homogeneity is — 1, and the differ-

ential is readily reduced to

y'dx y'dx

a; (1 + y")
~ x{l + y")

'

whose terms destroy each other, and have the differential

— for a common factor; consequently, it is clear that the

integral is here under a more undetermined form than in the

preceding example. It is hence clear that such integrals as

these ought to be avoided as much as possible.

(6.) We will now show how, according to the preceding

principles, to integrate a differential expression of the form

QjM + Bd^dy + Sdy'',

in which dx and dy are supposed to be constant or invariable,

and X and y are regarded as independent variables ; then, be-
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cause each term of the expression contains two dimensions

of the differentials, it is said to be of the second order of

differentials, or of the same order as that of the differential

of a differential, and in dimensions the expression is said to

be of the second degree, or of two dimensions. (See Lacroix's

" Oalcul Integral," p. #32.)

It is easy to perceive that we may consider Qdx^ and S ?//-

to have been derived from / Qdx and / Sdy by taking their

differentials, regarding x and y as separately variable in the

expressions ; consequently, the proposed differential may be

supposed to have been obtained from taking the differentials

of the differential dx I Qdx + dy j Sdy, on the supposition

of the constancy of dx and dy, while the first integral is

taken on the supposition of the constancy of y, and the

second supposing x to be constant.

Hence, by taking the differential of this assumed expres-

sion by considering x and y both to vary, and by differen-

tiating under the sign / , according to the rale of Leibnitz,

given on page 440, we shall have

Qdx^ + dxdy I -^ dx + dydx I -j- dy + Sdy''
;

which must clearly be identical with the proposed differen-

tial, and thence I j— dx + I -j- dy — B,.

Differentiating the members of this equation with regard

to X alone as variable, and differentiating the second term

under the sign / , by the rule of Leibnitz, we shall have

-r- dx + ax I TT, dy = -r- dx,
ay J dx- '' dx
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cZQ rd'S , dE
or we nave -, h / -rr dy = -.—

;

dy J dxr ^ dx'

and removing the sign / , by difFerentiating the members

of this, regarding y alone as variable, we have

dPQ d^ _ d'Br

dy^ dj? dxdy

'

J21D

which is the same as -t—j- for the condition of integrability

of the proposed differential

(7.) We now propose to show how to find the integral of

a differential expression of the form Vd-y + Qdx-, given bj

Lacroix at p. 234 of his work, in which x is the independent

variable, and y is regarded as being a function of x, and

P and Q are supposed to be functions of x, y, dx, dy.

Putting dy —pdx, and taking their differentials, regarding

dx as being invariable, which we clearly may do, we have

d^y = djidx; which, substituted for d^y, reduces the given

differential to the form (Pdp + Qdx) dx, which may evi-

dently, as 'in Lacroix, be represented by the more general

form (M.dp + 'Ndx) dx", whose integral ought evidently to

be of the form iidx" ; or we must haveu= I Mdp + V, sup-

posing the integral to be taken with reference to j?, regarding

x and y as being constants, and V as being a function of

them. Differentiating the members of this equation, regard-

ing M as being a function of x and y, observing the rule of

Leibnitz for differentiating under the sign / , we shall have

, rdM , J rdM , dY , d.Y
,du = Mdj^

-\-<^^J a^
dp+dyj ^ d^+ ^ dx+ ^ dy,

which, compared to M.dp + N<&, gives -
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„ rdM. ^ rdK , dV dY
^-Jd^^J'+^JTy'^^ + Tx+T^P'

whicli must be an identical equation.

To remove the sign / , we differentiate this twice suc-

cessively with reference to ^, and thence, since V does not

contain^, get

dN _dK rdM. dM. dV
dp ~ dx J dy -^ dy^ dy ^

dp^
"" dxdp dy dydp

an equation freed from Y, that must be satisfied. Hence,

dV _d^ _dM _dW _ rdM.
^

dy ~ dp dx dy -^ "^ dy

, dV ^.^ dK dM dM „ rdM .

"^•^ d^=^--dp^+Tx^+dy^'-J^^^'
and since the differential of the first of these with reference

to X equals that of the second with reference to y, we have

dy dpdx dpdy dx? " dxdy^ dy^ ^ '" ''

When a proposed differential satisfies (1) and (2), by sub-

stituting the values of -^ and —r- in

- rdM , , rdM ^ dV ., dV ,du = Mdp + dxJ^^dp + dyJ^^dp+-^dx+^^dy,
we shall get

/^_ dN dM dM ,\ .,

du = Mdp+ (1^ - ^p+^^^p+ -^ p^) dx +
dp'^ dx^ dy

dM _dM
dp dx dy

/dS dM dM \ ,

(^-d-x-dy^)^^'
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whicli is freed from / and under the form of a differential

of
J?,

X, and y, whose integral can clearly be found by the

rule in (4), at p. 444.

Thus, to find the integral of

{^xycLy + '^ ydx) (Py + xdy^ + {y + a?) dy^dx +

(2 + 3y) xydyda? + yWa;^

from what has been done, we put pdx and djpdx for dy and

d'y, and thence get

M = 2xyjp + a?y, N = xp^+ {y + ii?)p^+ (2 + 3y) xyp + f,

which give

^=.6.^ + 2(y + .-)^^ = 2y^

which will satisfy (2) ; consequently, the expression is an

exact differential, which is reducible to the form

du = (^xyp + x-y) dp + {yp^ + 2xyp + i/)dx +
(xp^ + a?p + Zxy'^) dy.

The integrals of the first term of this relative to^, and those

of the two last terms relative to x and y, by omitting the

terms containing^ in them, when added, give

xyp^ + ^^yp + x]^ +
for the value of v, ; consequently, since the sought integral

evidently has the integral = ud.i^, we shall have

udx^ = xydy- + x-ydydx + xy^du? + Cdx^

for the required integral. It is easy to see that we may, in

much the same way, proceed to determine the integral of any
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differential expression between x and y, -when it is of any

order of differentials greater than the first.

Concluding Eemaeks.—Because the differeiitial

dx

A (r — w)dx _ (r' — 2rx + Wf

{f- 2rx + Pf
~

dr

. ^(r'—2rx+ Vy^rdx— — Kd

dr '

we thence get

. r {r — x)dx _ _ A J A'""*
— 2™ + V-y^rdx

^
(f -27VX + h'f

~
'L !:

dr

(r' - '2rx + ¥f

= Ad 1 +
dr

for the integral.

It is hence easy to perceive how the forms of differentials

may he sometimes changed, so as greatly to facilitate their

integration, by taking the differential of them with refer-

ence to a constant in them.



SECTION VI.

INTEGRATION OF DIFFERENTIAL EQUATIONS OF THE FIRST

ORDER AND DEGREE, BETWEEN TWO VARIABLES.

(1.) It is manifest that a differential equation between

any number of variables, when the variables are separated

from each other, is such that the integral can always be

found ; and if the terms of an equation are of an integrable

form, it may evidently be integrated by the methods given

in Section V.

(2.) If we have an equation of the form 'S.dy + Ydx = 0,

between x and y, such that X is a function of as alone, and

y a function of y alone, then, dividing the equation by XY
the product of the differential coef&cients, it is reduced to

:^ + =^ = 0, which is clearly an integrable form, or such
JL J\.

that the integral I ^ + / =^ = can be found.

Thus, the particular differential equation

{x + Vfdy = (j- + Vfdx

dy _^ dx ~
is reducible to

{y + Vf {x + Vf'

whose integral is ^^, =^ + ^-

(3.) Similarly, the differential form

XYc?y -f- XiYida; = 0,
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divided by the partial prodact XY, of tlie differential coefGL-

cients, becomes „ +
"

^
L. = 0,

in which the variables are separated, and it is clearly an.

integrable form, or such that the integral

r^.f- X
can be found.

Thus, the particular differential equation

(as + 1) y"' dx = (j/^ + 1) xdy = 0,

divided by xy^, becomes

(i+^)'^-=(i+y^^=

which is clearly an integrable form, the integral being

X + log X = y 1- C.

(4.) The equation dy + Fydx — Qdx,

sometimes called a linear equation^ can have its variables

separated by assuming

dy + 7ydx = 0, which gives -^ = — Ydx,

whose integral may evidently be expressed by

log y - log C = log
I
= - jFdx,

or using e for the hyperbolic base, y = Ge-/'^<'\ To adapt

this to the proposed question, we may suppose to vary

;

consequently, by taking the differential of y on this suppo-

sition, we shall have

dy= - Ce-A'"'dx + dGe-A^\
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By substituting y and dy in the proposed equation, and

erasing the terms that destroy each other, we have

^Ce-A"^ = Q(fa;, or clQ, = eP^'^lx,

whose integi-al gives C = I ef^'''''Q,dx + C. Hence, from

the substitution of this value of in that of y, it becomes

for the integral of the proposed equation.

Remarks.—Hence, the integral obtained from a very sim-

ple case of the proposed differential equation, by the varia-

tion of the arbitrary constant, has enabled us to find the

integral.when taken in its utmost extension.

OtJierwise.—By assuming y = Xs, we shall get

dy = sdX. + X-ds,

which values of y and dy, substituted in the proposed equa-

tion, reduce it to

sdK + Xds + FX^dx = Qdx,

in which X being arbitrary, we may assume

dz + Vzdx — or s = e-A''^,

and thence get

(OC =^ = 2-'(idx = ef^^^Qdx,
z

whose integral is X = fef^'^'^Q^dr, + C.

Hence, from the substitution of these values of X and z,

we shall have

,y = Xs = e-A"^
( A-^'""'" Q'^^ + ^')

for tlie integral, the same ns found by the preceding method.
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Eemark.—This method of integration has been taken

from p. 254 of Lacroix's " Calcol Integral."

(5.) The more general differential equation

dy + Yydx = Qy" +
' dx

can readily be reduced to the preceding form.

For by multiplying its terms by ;—j
, it becomes

ndy nPdx _,

,

—-, — — — nOdx
;yn + 1

y.

which, by putting s = —
, becomes

ds — nPzdx = — 7iQ,dx,

which is of like form to the differential equation in (4).

Hence, by putting — nP and — n Q, for P and Q in the

integral in (4), we shall have

s = en/P*" (—n re-^A"" Qdx +G'\

for the integral of the preceding equation, and thence we

get y. (See p. 192 of Young's ''Integral Calculus.")

To illustrate the preceding formulas, take the following

EXAMPLES.

1. To find the integral of dy + ydx = aar" dx.

Comparing the equation to that in (4), we have

P = 1 and Q = aar", . and thence / Fdx = x,

which reduces eJ^^'' to e', and

I'eA'^ Qdx + C reduces to a fe'aPdx + C
;
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wliose integral, being found by integrating by parts, gives

a fe'a?dx + G' = cKf {a? —2x + 2) + 0'.

Hence, from y = e-f^^ i Ce/^"'^ Qdx + c)
,

we get y — a{a? — 2x + 2) + C'e-"

for the sought integral

2. To find the integral of dy + ydx = aafdx.

Here we have P = 1, Q =; »«", and thence

e/P"^ = e- /"eA"^ Q^dx + C = a fe'sf'dx + C,

which, integrated by parts, as before, becomes

6^a [«" — njB"-* + n{n — 1) x"-- — &c.] + C;

consequently, we shall have

y = 6-/^^"= {ef^^ Qdx + C)

= Qlaf—naf'-^ + n{n—l)x''-^ — &c.J + C'e""'

for the required integral.

3. To find the integral oidy + y -^ — — dx.

Here we have

p _ X
c, _ ax

^ - 1 + x" '^-r+^'

fPdx = log (1 + a^^, eA""^ - ^log^/a + «)^

and feA^ Q,dx + C = Q fe '"sv" + *"> -^^„ + C
•^ -^ 1 + ar

= Qe'osva + i^^ ^ C' •

consequently,

y = e-f^'^xire/^^Qdx + C'\ = Q + C'e-'°«*'f>+^

is the required integral.
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4. To find the integral of dy -\- yrljc, — if xdx.

Here, from the formula in {5), we shall have

P = 1, Q = £B, w = 2, fl^dx = X,

and J- we-"/i''*^ Qdx + C = f- 2e- ^"^ xdx + C

= e-- (^x + D+C;
consequently, we shall have

for the required integral.

5. To find the integral of dy + y z. ; — y"- ^ -„

.

Here P = yZT^^ ^ = F-^^'
^'^^ '"- = 1;

thence we have

J^dx = — log ^1 (1 — x^ and e"/'"''^ _ ^ - log ya - ««).

Hence, we shall have

- n fe-^f^^'^q^dx + C = - /"e'ogva-x') J!^ + q'
J J 1 — ar

= e
log 1/(1 -i") ^ Q/

which gives z = - = 1 + C e'^eva-^")

for the right integral.

6. To find the integral of dy - ,^^ = -^
Here

/P(£a! = -log^(l + a!^),

and ef^'^ = e
- .og ^a . x"; ^ . ^ ,

and thence
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AZ-^Qr^a, + C':=a /*_iL_+ C=-^ + 0';
•'' ^ -r J (1 + a^)l VI + a?

consequently, y= ax +G' Vl + a? is tlie integral.

7. To find the integral of dy + Yir:i»
~ V^^^^-

Here ^^^i^T^' Q = ^'i ** = ""
2'

yPcZcB = — log (1 — ^f, n JTdx = log (1 — «=)«,

and e"/^*^ = e '"^ d- ^"^i = (1 - ;c=)^>

from tlie nature of numbers and their hyperbolic logarithms.

We also have

- n fe-"M^qdx + C'= I f
"'^

, =-\ (1- ir=)^+C';

consequently, from s = —^ = -— j- = y*

since z — e"/^"' (— n Je~"f^'"' Qdx + C)

=:(l-a?)'(-|(l-a^)' + C'),

we shall have y* =• C (1 -;»=)*- ^ (1 - »=)
o

for the required integral.

(6.) If Mdx + 'Sdy = is a homogeneous function of

X and y of the degree n, its variables x and y may be sepa-

rated.

For if we divide M and N by «*, it is manifest that the

equation will be reduced to the form

/(l)'^^+/'(l)^^=«'
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since it is clear that the dimensions of y in the numerators

of the quotients equal those of x in the corresponding de-

nominators. If we put - = s or 2/ = 335, we have

dy = sdx +^,xd2,

and thence our equation is reduced to

/ (s) dx +f {£) {zdx + xdz) = 0,

or [/ fe) + zf {£) ] rfe == - xf (3) dz,

.. . ^ .
dx f'(z)dz

or its equivalent — = — •/ ' ,„ , ^ ,

X f{z)+zf'(zy

in which the variables are separated ; consequently, we shall

^. 1 r f'{^)dz
have log a; = — / ' / ^,, , .

EXAMPLES. •

1. To find the integral of {iff' + yx) dy = {xy + y'^) dx.

Dividing by a?, we have

(^ + 1) cZi/ =
(I

+
I')

dx, or (1 +z)dy={z+ z^) dx,

- ydx dy dx
or dy = ^— , or -^ — -^,

X y X

which gives log y — log ex, oi y = ox; which results im-

mediately from the proposed equation, by erasing the factor

X + y that is common to its members.

2. To find the integral of [y + ^(a? — y^)'\ dx = xdy.

Dividing by x, we have

s+|/r^i^ = ^, /(^) = ^+4/riri^, and/'(.)=-l,
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and thence, from the formula, we have

]oga;= /*—=^==: sia-^s + C = sin-'^ + 0.

3. To find the integral of (j/x + y^) dx = {a? — xy) dy.

Dividing by a?, we have

{z -\-3^dx = {].— s) dy
;

and thence, since s + s* =f{3) and 1 — s = —f{^\
we shall have, by the formula,

2\ogx = J dz |-3 — -j, or log ar" + log 3 + - = 0,

or
^ + log (ry = C,

as required.

4. To integrate ( Vx^ + y^ + y)dx = xdy.

Dividing by x, we have

{VI + s" + z)dx^dy.

Hence, by the formula, we shall have

log x = y*_^4= = log c {z + Vz' + 1),

or a?=c\^+ ^{f + aF)\,

which may evidently be changed to the form

{a?-ctjf = <?{y^+x^\

or its equivalent ar" = 2cy + <?.

5. To integrate {x + zy)dx + ydy = 0.

Here (1 + 2z) dx + zdy = 0,

f{z) = l+2z, and fiz)==z;

and thence by the formula we shall have
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or we have log (x + y) -{ = 0.
° ^ ^' x + y

(7.) Equations between x and y may sometimes be made

bomogeneous by certain substitations, and tbence their in-

tegrals may be found. Thus, if in

fynx + ny +p)dx + {ax + by + c)dy — 0,

we put x = x' + A, y = y' + B,

and assume

Am + Bn +p = 0, Aa + B5 + c == 0,

we shall have the homogeneous differential equation

{mx' + ny') dx' + {ax' + ly') dy' = 0,

whose integral can thence be found.

Solving the equations

Am+Bn+p—O, Aa + B5 + c = 0,

, . en — In ap — me
we have A = —^ — and B = -^ ,

m^ — an mo — an

which give the values of A and B when mh — an is different

from naught; but when mi ~ an =^ 0, we have 5 = —

,

which reduces the proposed equation to

{mx + ny +p) dx+ {ax + by + c) dy =

{mx + ny +p) dx -{ Inx + ny -\ •) dy ~ 0,

or pdx + cdy + {mx + ny) .Idx + — dy) = ;

which, by putting mx + ny — s, gives

in
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mcbi + ndy = dz and jpd:c + cdy + z \dx H dy\ = 0,

. -, mo -\- as -, ^
or we nave (p + z) dx -\ ay = 0.

T-, . , dz—mdx ,.,

Hence, since dy = , we readily get
7h

dx + \ , ,
^ = 0,

(mc + as)d3

mnp — ri-^ c + {inn — ani) z

in wHch the variables are separated; and if ti. = a, this

reduces to the very simple form

- {mc + az) dz
dx + ^^ —hr— = 0.

m,np — mr c

(See Lacroix, p. 253.)

(8.) Particular cases of integrability of differential equa-

tions between x and y may often be discovered by reducing

them to homogeneity.

To illustrate this, let there be taken the equation

dy -{-h-tfJx = ax™' dx,

called the equation of lilccati.

1. If m == 0, the equation is equivalent to (i,23 = ^j-j
,

in which the variables are separated, and of course it is in-

tegrable. Indeed, since

a-hf= (a* + 5*2/) (a* - l^y),

we easily get

2a^dx=^^ + -,,^,
a^ + Py a'—V^y

whose integral is

2a- aj = -r log (a^ + b^y) ^ log (a^ — l^y) + 0.
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2. If m is different from naught, we may put y = s*, and

thence get dy = Ics^'^'^dz ; consequently, from the substitu-

tion of the values of y and dy in the proposed equation, we

have ksds''-'^ + h3'"'dx = ax'^dx.

To make this a homogeneous equation, we must equate

the exponents of s and x, and we shall have h — l=2A;=;?rt,

or ^ = — 1 and to = — 2 ; consequently, the equation

dy + hy'^dx = ax^dx

becomes integrable when we put 2~^ for y, and — z for m,

and is reduced to

— z~^dz + hz~'^dx^ ax~^dx,

. . . dz hdx adx
or its equivalent ^ H 5- = —=-.^

z^ Z' osr

3. If, withLacroix, at p. 256 of his "Calcul Integral," we

v' 1
put 2/ = —2 + T- , we shall have

, t£w' 2xy'dx dx , . y''^ 2u' 1

and thence we shall have

y^ x*

or, since dy + Sj/Va? = ax^'dx,

we shall have -4 + -^r— = ax"'dx,

or dy' -\-ly'^~ = ax^*^dx;
SO

which, by putting x= — becomes

dy' — hy'^dx' = — oas'- "- *dx',

20*
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or putting — y' for y', we shall have

dy' -^hfcLx'^ax'-"^-",

which is an equation of the form

dy + ly^dx — ax'^dx
;

ana becomes integrable, as before, when m + 4 = 0, or

when »ft= — 4, and is obtained immediately from

dy + hy-dx = aaf^dx,

by putting y=— li + j^
or j^= —yV +

-^
,
when aj' is

put for - .^ X

It is hence clear that the equations

dy + i>y^dx — ax-"'-*dx and dy' + h/^dx' = ax'- "' - *dz',

are of such a nature, that if in the first we put

x— ~, and y = — y'x'^ + -r .

it will be changed into the second ; aad that if in the second

we put x' — - and y' = ~ yx^ +
X i

it will be changed into the first ; consequently, either of the

equations is a transformation of the other.

4. Eesuming the equation

dy + hy^ dx = ax'" dx,

and putting y = ± — , we have dy=^^~; and thence

we get

T -^ H Ti
= ax'^dx, or T dy' + Idx = ay"x"'dx.

y y

If we put a?"* + ^ = a/, we have
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m + 1'

and thence tte preceding equation is easily reduced to

or to dy' ± —^, w"' «&' = ± ^ «' "^+"'
cZa;'.

^ m + 1^ m + 1

It is manifest that if m = — 4 in the equation of Kiccati,

that it -will be integrable, and thence
^m

dy' ± -^ y'^dx' = ± -^-, a;'
" *' dx'

derived from it, and having the same form, by putting

2/ = ± — and as*" +^=03',

must also be integrable ; that is to say, the equation

dy + hy^dx = ax~*dx

being integrable, it follows that

must also be integrable, and thence, by putting

~m — 4 = — g or wz^ig— 4= —
g,

is the value of m for another integrable case; and putting

— g for m in the equation
o

dy' ± —% y'^dx' = ± -——f aj'-^ + i
c?a;',

Q

we have »?i = — - for the value of m in another integrable
o °
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case of the equation of Eiccati, and so on; noticing, that the

general form of the exponent m, when and — 2 are not

included, is m = — ^
——

-
, which is called the Criterion

of Integrahility of liiccati's Equation, q being any number

in the series 1, 2, 3, 4, &c.

It may be noticed, that all the terms that result from

taking — for ± in the denominator of the criterion, must be

considered as resulting from the equation

dy + Ifdx = «»-"-*;

"while those terms that result from taking ^- for ± in the

denominator of the criterion, must be supposed to ha\re re-

sulted from the equation

cb h
—

"

*

dy' ± r v'Va;' ^ ± zr x'^^ + K

5. To perceive the use of what has been done, take the

following

EXAMPLES.

1. To find the integral of dy + y'^dx — a^x-*dx.

Here, by putting y = 1 in the criterion, and using — for

± 1 in its denominator, it becomes

-4 .

which agrees with the exponent of x in the right member

of the proposed equation, and of course shows the equation

to be integrable. To perform the integration we proceed^ as

at p. 466, by putting

is = — and y = — y'x'^ + £»', since 5 = 1,

and thence get dy' + y'^da/ = aV~'"cfo,
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as at p. 4G6 ; where, by regarding — 4, the exponent of x in

the right member of the proposed equation, as being equal

to — m — 4 the exponent of ce in the equation

dy + iy^dx = a'^x~"^~*dx,

we shall haye m ^ ; and thence the preceding equation

reduces to -dy' + y'^-dx' = a^dx',

which gives

dx' = ^'-^, = (^ + ^-) -^ 2a.
a — y'^ \a + y a — y I

Integrating this equation, we have

^ax' =log C ^^-„ or e=«' x ^^^ = C = const
a -2/ 0, + y'

Prom «' = - and y' ^ — yy? + a;, we get

/ a; (a?y - 1 ) - g \ ^ ^
Vsef— £cy — 1) —a/•{—xy—V)

for the required integral.

2. To find the integral of dy + 2/^if» = — c?x~^dx.

Putting X — - and y = — y'x"^ + »', we get, as in the

preceding question, dy' + y'-c?a;' = — c^dx'

.

Hence dx' — — " —
a' + y'-' a

1 +
e-r

whose integral gives ax' + C/ = cot~* —
;

a '

or, since »' = - and y' z^ — yx' + a;, we have
X

- + C = cot-i—^—^^—
.

!» a
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3. To find the integral of dy + fdx — 2x~^'dx.

Here, by putting q = 1, and using + for ± in tlie de-

4
nominator of the criterion, we have ??i = — - , and of course

t>

we must compare the proposed equation to the equation

„ I . -m
dy' ± ——- y'^dx' = ± —- »'- + ' dx'
^ m+l^ m + 1

'

given on p. 467 ; consequently, we shall have

" =1, -^-T = 2, and, '^
^

7rt + i m + T ~ ' ' 7?i + 1
~

8
'

agreeably to what is said at p. 468 ; hence,

Zm = 4m +4 or m=— 4, a=m + l=— 3,

5 = 2?K + 2 = - 6,

and thence we get

dy" - &y"\ dx" = - •dx"-'dx".

Hence, from the formulas at p. 466, we have

dy'" - <Qy"'^dx"' = - Mx'"
;

since — wx — 4, the exponent of x is here — 4, and of course

m = 0. From tbis equation we have

whose integral is

1
y'" +A

X'" =

Because x'" = ^ and y'" = - y"x"^-^ ,

and from the formulas at p. 466,
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1 -i-

we here have
1 1 -^—

m'" =.—rn y"=±-,, and x" — x'"' + ^.

X y

Hence, since m 4- 1 = — 3, we have

x"z=.x'-^ and x"' = \ = -^.
X x'~^'

or, since a; = —
, , we have »"* == r , and thence x'" = a;"'

;

X x'~^
and from

x" 1
y'" = - y"«>"^ - -g- ,

y"= -, ,
and y' = - yx^ + x,

we have

,,"'

.

" - gc"° x" _ Q + x^{l-yx
)

y - -ya? + X 6~
Qx^{l-yx)

Hence, from the substitution of the values of x'" and y'" in

y"' +
X'" = -^ log

1 , ^ ^ ''2/J

we shall get

-1 1 , ^ 6 — «» (3 v'2 - £«*) (1 - yx)
X ' = - ^—^ log C ^:^-^ p-!^ i-^;

0^/2 6 ^ a!» (3 4/2 + »') (1 - yx)

or 6 y2a!~* = log e^v^"'^

B A,,-i /6 + !»' (3 -1/2 + as*) (1 — yx)\
gives e^'^'^ ' {

^ ^ ^ '

.

— ^-^) = const
^6-!B»(3|/2-a!»)(l-y!By

for the sought integral.

4. To integrate dy — y^dx — 2x~^dx.

Comparing the equation to
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a b
-"*

du' ± y'Hx = £»'"* + 1 dx,

we have

a h . , m= — 1, -T = 2, andm + l~ ' m + l~ ' m + 1 ~ 3

'

wMcli give »« = — 4, a = 3, and & = — 6, and thence we

have dy" - 6y"'dx" = 3x"-'dx".

Hence, from the formulas at p. 466, we have

dy'" - 6y""dx'" = 3dx"\

which gives

.^,u _ dy'" _ _ dy'" 4/2
~

6 (,-+!)" ^^2 (1 + 2/-)

whose integral gives

3-t/2a;"'= tan-'2/"V2 + 0,

From

"/S\ >
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(9.) It may be added, that diflferential equations may often,

by the introdactioa of new variables and particular processes,

be reduced to integrable forms.

1. Thus, to find the integral of

pdx rdy _ x^'dx

X y ~ o^y"
'

since the integral of the terms

vdx rdy . , ,^
1 IS log afy",

X y
1

by putting aPy^ = s we have y' = — ov y = [
—

- ) , and

n

thence 2/" = (—^) ;
consequently, the proposed equation is

7nr + np
n/t If Cj'7'

reduced to d log x^'y'' =: d log z — ,

n
Zrdz """ "*" "^ "—1 '"'• + np

or =z X '' dx, ot: s'' ds ^ X '' dx,
z

in which the variables are separated. Integrating this, we

have
n mr ^^np + r

Zf X r'— = ;
; + const,

n mr + np + r

r T

n mr + ?tp + r

azr X r

or •— = + const.
n mr + np + r

Eestoring the value of s, we have

mr + np -i-^
"^

, VS. nx ^
ay" a?

Tnr + np + r^

which needs no correction, supposing y and x to commence



474 EQUATIOITS OF THE FIEST ORDEH

together ; dividing the members of this equation by a; >•
, it

is immediately reduced to

ay" == .

"^ tnr + np + r

Eemaeks.—The preceding method of finding the integral

is analogous to that of Lacroix, at p. 259 of his " Calcul

Integral."

The integral can also be immediately found by multiplying

11 '^

its members by - a; "
3/", which gives

— y"x >" dx+7ix '' y"-^ dy = d ix'' y"j = — x '' dx;

whose integral, as above, is

mr + np + r m + 1

"2 nx * nx "

aa; >• v" = or «'/" =
mr + nj) + r mr -\- nj) + r

supposing the integral to commence with x.

2. To integrate the equntion

dy dx x'^dx

y x ^ ay ^n '

we multiply its members by -
, and thence get

X

dy ydx x"'~^ dx

X x' a \/n '

an exact differential Taking the integral, we have

y x"* a;"*
+

'

^ — OT y=
X ma i^n ma ^n

which needs no correction, supposing the integral to com-

mence with X.
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8. To integrate the equation

, .dx du

we maj'- clearly, fromwhat is shown at pp. 34 and 35, take the

differential of its members by regarding dx as being constant,

and shall thence get

. dx -d^^{a + y)=^dx + dy-dy--^x;

or, by reduction, we shall have

dx , . X dx^ dy^
5^.(« + 2/) = ;5,

or ~=~~,
in which the variables are separated. Henee, we shall have

dy dx

(a + yf x^
'

whose integral gives

{a + yf=±x^+o;
or, by squaring,

y + a = X ± 2cx^ + e°,

which can be further reduced to

{y + a — x^ ~ c^f — 4:g\

which represents the integral of the proposed equation, taken

in its most general sense.

4. To find the integral of ady = ydx — xdx.

By assuming y = a + v + x, we have dy — dv + dx,

and thence by substitution the equation becomes

adv + adx — adx + vdx + xdx — xdx
;

or, by erasing the terms that destroy each other, we have

= dx, whose integral is a; = a log cv ; or, since
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V ^= y — a — X,

we stall have » = a log c (y — a — »). (See Vince's

"Fluxions," p. 181.)

(10.) We will now show that if we have a differential

equation of Mdx + Hdi/ = 0, of the first order, between

two variables x and ?/, in which the condition —r- = -^— of
•^ ay ax

integrabUity is not satisfied, that the condition may still be

satisfied after it has been multiplied by. a suitable factor;

and of course the integral can be found.

For since Mdx + 'Ndy = is not considered as being im-

mediately integrable, it may be supposed to have been

obtained by eliminating a constant from an equation of the

form F {x, y) =: and its first differential. Hence, if

stands for the constant, by solving the equation with reference

to C, we shall obtain an equation of the form C =f{x, y) ;

consequently, by taking the differential of this, we shall,

without reduction, get the differential equation

Wdx + N'dy = 0,

in which -r or -j- must clearly be the same as in
dx dy '

M.dx + 'Ndy = 0,

since the two equations result from the elimination of the

constant C, from the equation F {x, y) = in two different

ways ; the proposed equation resulting from the elimination

of C from F {x, y) = hj means of its differential equation,

and the equation M'dx + N'cZy = resulting from the im-

mediate differentiation of the equation G =f (x, y).

Hence, eliminating ~ from the preceding equations, we

, .. ^ dy M. J dy M'
shallget ^ = -^ and ^ = -

j^ ;
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MM'
consequently, we get -js = SP ^^^^' '^^^^ '^' ^^^ '^ "^^®*

clearly be like multiples of M and N.

Eemaeks.—1. Having found M' and N', it is manifest tliat

tlie integral of Wdx + K'% = will give C =/(«, y), in

which C represents the arbitrary constant, and which rep-

resents nearly a transformation of the equation F {x, y) — 0.

2. Since Wdx + 'S'dy = is an exact differential, it

follows, from Euler's Criterion of Integrability (see p. 440),

, „ ,
dW ^flST'

that we shall have -r- = -t~ •

ay ax

Hence, if z represents the factor of M and N, which gives

Ms = M' and Ns = W, the condition of integrability

dMz dWs
becomes —y— = —r-

,ay dx
which gives

(Mffe + zdM) -^dy — (^dz + zdS) ~ dx,

IdM. dEx _-^dz ^ ds

\dy ' dx) ~ dx dy''

which z must satisfy. Having found Mscfe + 'Szdy = du,

it is manifest that the members of this multiplied by any

function of u will also be an exact differential ; consequently,

there will he an unlimited nurriber offactors that will iinake

the proposed differential an exact differential.

EXAMPLES.

1. To find the factor which will reduce ydx — xdy =
to an exact differential.

Here we have M = y and N = — a?, and thence

/dK _ dN\ _ -vr ^ _ -Ai-
f^s

\dy dx' dx dy'
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wLicIi can clearly be satisfied by putting s = -j, and

2 2
gives - = -^ , an identical equation ; or, by writing tbe form

dx dy . , . ^i ^ 0, and integrating
X y

ydx — xdy „ ,, p dx dy
^ 5—^ = 0, or the form -,

y" ^ y

we have - = C = const.

y

Eemabks.— - t^ - = 0, —„ c^ - = 0, and, generally,
y y y y

(-) ^^ - = 0,
V/ y

are also exact differentials of the proposed equation, agree-

ably to what has been done.

2. To find the factor that reduces ydx — mdady = to

an integrable form.

Here, as in the preceding example, we get

1 - , ydx — rnxdu . x
2 = -;7rr7 ) and thence - „^,—- =d -=

is the transformed differential, whose integral is

-— = C = const

3. To find the factor that makes dy + Vydx = Qjix inte-

grable.

Here M = Py — Q and N" = 1, and thence we have

dM. rfN „
-, T, -KT dz dz

-, J- = P and 2P = iSr -,- = -p
,ay dx ax dx

supposing 2 to be independent of y ; consequently, we have

dz r— = Ydx^ whose integral is log z= j Pdx, supirosing the

constant to be included under the sign of integration / ,
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Multiplying the proposed equation by s= ef'^'^''^ which

gives log z =y^'''', we have

whose integral is eJ'^''''y^ I eJ^'^-'Qclx,

and thence y = e'/^M reA'^'^Qdxj,

supposing the constant to be indicated by the preceding sign

of integration, or the integral may be expressed, as at p. 456,

by y = e -/^"^(^fe A^'Q.dx + c) .

4. To find the factor that makes

^'^y + (4*^ :
jdx =

^ r 1 — x^'

integrable.

Here M — 4a;V ry:. on and N = a?*,
^ |/ (1 — ar)

and thence we shall have

^-^5^ = 40^-3*^ = .^=;

ay ax

consequently, supposing s to be a function of x only, we

, ,, , „ .ds ds dm
shall have zxr ^^•yf-^ or — = —

,

ax z X

which is clearly satisfied by putting s = «. Hence, multi-

plying the proposed equation by », we have

x^dxi + ^\dx -^—'—r- = 0,•^ ^
\/(X — ai")

whose integral is a^y + |/ (1 — a;") = 0.

5. To find the factor that will make

aydy + {px — hy^) c^aj =
an exact differential.
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Here M = ra — Jy^ and N = ay,

and tlience -r- v- = — 2J«,
-c?y (fa;

^'

whiclL gives — s x 25^ = ay -r- ,

by supposing s to be independent of y ; which, gives

dz 2Mx -^^— = or z z= e "

z a

for the sought factor. Hence the transformed differential

becomes

[aydy + {ex — hy^) dx\ e" " = ;

whose integral, sometimes called the primitive, is

(See Young, p. 210, &c.)

(11.) We now propose to show how to integrate any homo-

geneous differential eq^uation consisting of any number of

variables.

Thus, let l£dx + ISTJy + Vdz + &c. =
be a homogeneous differential equation, consisting of any

number of variables; then, if the equation is not integra-

ble, it is clear from what is shown at p. 4-1:5, that it must be

on account of the omission of a homogeneous factor, com-

mon to its terms. Hence, if « stands for the omitted factor,

we shall have

vM.dx + uEdy + uVdz + &c. = du,' = 0,

the differential being exact. If n denotes the degree cf

homogeneity of u\ we have, from what is shown at pp. 445

and 416, «M* -f ii^y + vFz + &c._ = ««';
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consequently, dividing the members of

uM-dx + uNdy + &c. = du'

by the members of the preceding equation, we shall have

Mdx + 'Ndy + &c. _ du\
Ma; + Ny + &c. ~ nu'

'

consequently, since the right member of this is an exact

differential (its integral being - log w'), it is plain that

M.dx + ISTc^y + &c.

Ma? + Nj/ + &c.

must also be an exact differential.

It hence follows, that the/actor which makes theproposed

differentials

M.dx + 'Ndy + &c. = exact, is =-f
——=r=p—;—5—

:

^ ' Ma? + Ny + &c.

'

and thence, if ILdx + lS.dy = is the proposed equation,

the requisitefactor is :rj— -^j .

Kemarks.—1. It is clear, from pp. 445 and 446, that the

degree of homogeneity of Ma; + Ny +, &c., when the pre-

ceding process is applicable, must be different from naught

;

and Mas + Ny +, &c., must also be different from naught.

2. If M.dx + 'Sdy = 0, and, at the same time, Ma3+]Sr?/=0,

tben, eliminating N from the first of these by means of the

second, we shall have

^dx-^dy = Uy {
y^ - ^^y

) ^Myd'"- = 0,

which shows that if My is a function of - , the integi'al can

be immediately found in its most general form.
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EXAMPLES.

1. To find tlie factor that makes

{xy — y^ cbo + {j/x + a?) dy = 0,

an exact differential.

Since Ma? + Ny = 23? y,

by dividing the given equation by x^y, we have

whose integral is log ajy + - = C.
cs

2. To integrate {a? — y^)dx + {xy + a?)dy ^^ 0.

Here Ma; + Ny = ar' (a? + y),

and thence, dividing the given equation by this, we have

whose integral is log « + - = C.

3. To integrate ydx — xdy = 0.

Here M. — y and 'N — — x, and thence Ma; + Ny = ;

consequently, from what is shown above, we shall have

Myd^^O, or fd^z=0;

and this multipliedby -^ ^ (-1 becomes <j) I'-l d - = 0,

an integrable form, since <(> (-1 represents a function of -

.
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4, To integrate {a?y — y^x) dx + yx^dy = 0.

From Mas + Ny = a?y, we Lave ( ^] dx + —;

"whose integral is log x -\- - ~ G,
X

the same as in example 2.

5. To integrate {x^y + y^) dx — (x^ + xy^ dy — 0.

Here M. = y {x^ + y^ and 'S — — x {x^ + y\
and thence we have Ma; + Ny = ;

consequently, from what has been shown, we shall have

Myd-^^f{^ + y-)d'^^ 0,

and it is easy to perceive that -j (-) is the factor, which

makes this integrable, since it reduces it to

/«' ^ \ , /x\ , X _ lx\ , x

which is clearly an integrable form, since F (-1 is supposed

X tx\
to be a function of - , at the same time that ( -I also de-

y \y)

notes a function of

y

y



SECTION" vn.

INTEGBATION OF DIFFEEENTIAL EQUATIONS OF THE FIRST

OEDER AJSTD HIGHER DEGREES, AND THE SINGULAR

SOLUTIONS OF DIFFERENTIAL EQUATIONS, ETC., BETWEEN

TWO VARIABLES.

(1.) It is sometimes said by authors, that differential

equations of the first order and higher degrees can not result

from the immediate differentiation of any integral, but must

arise from the elimination of an integral power of a con-

stant fi-om the integral, by means of its differential equa-

tion. (See p. 311.) That what is here affirmed is not uni-

versally true, may be proved from the simplest considera-

tions. For (see p. 191) in finding multiplepoints of thefirst

hind, we differentiate the equation of the curve by regarding

the co-ordinates at the points of intersection as being inde-

pendent variables. Thus, in finding the multiple points of

the curve whose equation (see p. 191), is

ay' + cxy — hx? == 0,

by proceeding, as directed, we have found the differential

equation 2ady'' + 2cdxdy — &bxdx'= ;

which, divided by 2dx', and tepresenting -p hjp, becomes

oar a ax a -^ a-^ a

in which -^ or p is taken on the supposition that, after the
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diflferentiation, dy is a function of dx^ or contains it. To find

the integral of the preceding equation, we must, by a re-

verse process, reduce it back to

^ady^ + 2cdxdy — Glxda^ = 0,

whose first integral is

2aydy + cxdy + cydx — Bba?dx — ;

and then the integral of this is

ay^ + cxy — Ja3° == 0,

the proposed equation, as it clearly ought to be. Solving

the equation

^' + a^--^=^' weget i>=-2^±-4/o^+12«fe;

or, since p = ^, we have^ dx

, . ^ , . ex (<? + 12dbxf
whose integral is y = —^ ± -^^— .^,

—- + const,

^ I Gx\^ ((? + 12ahxY
Hence [y + -) ^ -^^-^^

,

by omitting the constant, or

2 ^ cV _ c° + 36 c*dbx+ 36^ x Wa°hV + 12Vya;»

^ "^V + 4a^
~

3^ X 12V6^ '

which clearly can not be reduced to the integral

ay^ + cxy — hc^ — 0,

or the proposed equation. If we integrate the equation

dy^ — a?ddi?= 0, supposing x and y to commence together,

by either of the preceding methods, they will be found to

give 2/^= aV ; while dy^— axdx^ = 0, integrated by the first
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method, gives y — —-, and integrated by the second method,

gives 7^=-r-aoi^, which does not agree with the preceding

integral

(2.) The common method of finding the integrals of equa-

tions of the form

dy" + Vdy^-'dx + Qdy^-'^da? + + UcZa?" = 0,

or its equivalent

consists in solving it like an equation of the nth degree, by

regarding -~ as the unknown quantity, and of course there
CtSG

"will result n equations of the forms

^-v-O ^-v'-O ^_«"-0

and so on, to n equations; JpiP'iP"-, &c., being the roots of

the equation.

From these equations we get

y— J pdx = 0, y— jjp'dx^O, y~ j p"dx=iQ,

and so on. Hence we shall have

\y-fp^) X \y-fp'dxj X [y- fp"dyj = Q,

which may be taken to represent the integral of the pro-

posed equation; noticing, that each of the factors may be

supposed to be corrected by the addition of the same con-

stant.

For the method of integration here proposed, the reader
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is referred to Lacroix, " Oalcul Integral," p. 279, &c. ; Young,

"Integral Calculus," p. 224 ; and Lardner, p. 318.

EXAMPLES.

1. To find the integral of y^^^ + 1x -^ -y=0.

Eeducing the equation to the form

ydy'^ + 2xdydx— yds?= 0,

and taking the integral, regarding &> and y as independent

variables, we have

—^ + 2yxdx-\-oa'dy — ydxx—O and ^ + x^y—y^ =0,

found on the supposition that x and y commence together,

and that y in the last term is constant ; but, since y is not

constant in the last term, it is clear that the equation has

not been obtained on the supposition of x and y being inde-

pendent variables ; noticing, if the last term of the equation

had been x or any function of it, the proposed equation

might have been obtained on the supposition of x and y
being independent variables, and of course a doubt as to

the true origin of the proposed equation would have been

the result.

Hence, solving the equation on the supposition that x and

y are not both independent variables, we have

dy _—x + Vy^ + x^ dy _ — x — t/ {if- -\- x^)

dx~ y dx~ y
'

which may be put under the forms

2^2 + "' ~ ^(2^'+*') = and 2/ g + c. + f (t/=+a^)=0;

BjUd by taking the product of these factors, we have
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whose integral is

± Vy^ + a? = a; + C, or y^ = '2cx + C^

2. To find the integral of dy^ ± iM' = 2daidy.

Integrating on the supposition of the independence of x

and y, we have

^ ± aP

2
xy + C, or y^ ± Of' = 2xy + 0.

Eemaeks.—If we take + for ± in the proposed equa-

tion, we have

dy^ + do^ = 2dxdy, or dy"^ — Mydx + do? = 0,

or dy — dx = 0,

whose integral is y — a; = C ; the same as by the preceding

method. If the proposed differential is

dy' — da? = 2dxdy,

it is clear that the integral found on the principles of the

independence of x and y, and their dependence, as in the

common method of integration, will not agree ; consequently,

the origin of the proposed differential is doubtful.

du^ difi 1
3. To integrate a? ;^ + a; — 1 = 0, or -4-^ — 1-

Multiplying by da?, and integrating on the supposition that

X and y are independent variables, we have

ds^
dif = -^ da?, and thence ydy = dx log x — xdx,

SG

which integrated again, gives

iT = X log X — X — ^ + const,
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or y^ = 2x\ogx — 2x — x' + C

;

consequently, the origin of the differential is doubtful.

Eemabks.—Mr. Young, at p. 226 of his work, finds

Vm — x^ — tan^'y -y = Vx — x^ — tan^'y (- C
X

for the integral ; a result very different from the preceding.

(3.) When only one of the variables x or y enters the pro-

posed equation, and the value of the variable in a function

ot -^ ^ p can be found ; or if^ can be found in a function

of the variable ; then, in solving the equation in the com-

mon way, the other variable can be found. Thus, having

found x — 'E{p\ or y=f(j)),

wage. .» = !^ii>* ..d Oy = '^<i^:

consequently, from

dy = pdx, or dx = ~,
we shall get

y=.fpdx = fp^hj>, or «^=f'^ = f^^dp,
whose integrals will determine the value of y or x.

For integrating

by parts, we shalFhave

y=P^{p)- J-S{jp)dp',

so that if F (j>) = ~rjr\ ' ^® ^'^ S®*

21*
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1 H 2;

whicTi, from x = -5 -. gives « = y , and ttence
_p^ + 1

jr
' a; '

/I
a;

y = Vx — x' — ta.n-^ y ^ + C,
"^ X

the result quoted from Mr. Young in the preceding example.

If the equation involves such high powers of a; or y that

it can not readily be solved, we make such a substitution for

dy dx 1 ,—— ^^ 7) or — ^ — ^ 7)
dx '^^ dy jp

'^ ^

as will reduce the degree of the equation, so that a; or y
may be found by the common methods of solving equations.

Thus, to integrate

dy
we put £ = XB,

and thence, by substitution, get

a? + a?z + a?s^ — 0, or x= — = j

,

1 +s"
which gives

'^

1 + 0^
"^

(1 + s'/ ~ " (1 - s»)2 •

From ~ = :r2,

aa?

by substituting the value of x, we have

Tx = -TT^^^ °^ ^y = -rr?^^
and, substituting the valae of cZa;, thence

_ _ (l-23^)sVg _ _ Ss^'ds 2^d2

(1 + sy (l+V/ ^ (1 + 2*)='
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whose integral gives

_ 1 1__
^ ~ 2 (1 + ^y 3 (1 + s")

"^

Solving this equation by quadratics, regarding -^ as

beiag the unknown quantity, we shall get
:j

p in a

function oi y, whose -reciprocal gives 1 + s' in a function

of 2/, wTiich, diminished by 1, gives s^ whose cube root gives

the value of s. Hence, x is easily found in a function of y,

as required ; noticing, that we may clearly proceed in like

manner in all analogous cases.

(4.) If the equation involves both variables, in such a

way as to make its terms homogeneous relatively to the

variables, then, putting y = a;s in the equation, if n denotes

the degree of homogeneity of the equation, its terms will

be divisible by x" ; and we shall have an equation in terms

of s and p, whose highest power in s will be s".

Hence, if the equation can be solved with reference to z,

we shall have s = F {p) ; or, if the equation can - be solved

relatively to^, we shall get p =f{s). Since y = xz, we

have dy — xdz + zdx = x(M {p) + F {p) dx,

dy dF{p) „, ,

, . , . dx dF(p)
which gives — — TTT^^ 1

whose integral can be found in a function of p ; and thence

from y = xz = x'F (p),

by eliminating p, we get y in a function of x, as required.
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la much the same way, from

^ = -^ =/(3), and from dy = xdz + zdx,

we have -^ + « =.fi?\ or -^ =/(3) - 2,

, . , . dx ds
which gives --=^^^—-,

which, integrated, expresses :» in a function of z ; and thence,

from y = xz, we express y in a function of z ; consequently,

eliminating z from the values of x and y, we shall get y in

a fdnction of x.

EXAMPLES.

1. Given y — icp = a? l/l + ^Ho find the integral

By putting y = k^, the equation reduces to

z —P = VT+p% or 3 =p + VI +j?'.

which gives <Zs = (?p H
=^-^^^— •

VI +y'
and from dy = ^(^a; = tctfe + zdx,

^
dx dz dp pdn

we have —
•
= = -^— ^-^-t,.X p-z Vl+p^ H-i>"

whose integral clearly gives

log a; = — log {p + 40+y) - log VI + jfi + log C;

and thence we have
c

X =
VT+p'{p+ Vi+fy

and since z =p + Vl + p',

we have xz = y =
VI +p"
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consequently, we hence get

y

c + Vc' — y"

for one form of the proposed integral.

Otherwise.—By squaring the members of the proposed

equation, we have

y^ — 'ixyp + iK^jj^ — y?-\- x^p^
;

or, erasing the terms that destroy each other, we have

y" — ar*

'iixy

or, since y = xs, we shall have

i';

, , dx dz ^ ^ dx 2sds
and thence — = -ttt-- reduces to — = —

X ~ f{s) — z X 1 + s

whose integral is

log X = log .j 2 or » =
1 + s^ 1 + s^'

which, siace s = - , is immediately reducible to

X [a? + y^) = x^ c, or x^ + y^ = c'x.

Eemarks.—It is easy to show that this integral agrees

with the integral found by the first method, since it can be

put under the form

f „. ./:3—r. _ f+ Vc" — y^ = ^-
, or 4/c= — y^ = ^

X ^. X

which, by squaring and an obvious reduction, becomes

a^ + y- = 2cx, which agrees with x^ + y^ = o'x, when we
put c' for 2c. For the first of these solutions, the reader is

referred to p. 229 of Mr. Young's work.
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2. To find the integral of y^ —p^ = pf.
Putting xz for y, the equation immediately reduces to

z^
s" —p =pz\ whicli gives p ~ Y'+^ ~ •^^^'

„ . dx dz ^3(1 +3=)
Hence, we have — = :jj-r = — -^ j——

.

' X f{z) —z ^ — z- + z

Since = = = » —r, we shall have
^ — z' + z z z^ — z + V

7 7 T "^
dx dz as dz 4

X ~ z z'-z + l z 3|3 / _ r =

4 U "*" V 2

whose integral gives

1 A , 4A
log a? = — log z — g^-j = — log C3 g- ,

in which A is an arc of a circle, whose radius = —^ and

1 „. 1/ .. y „ ,

tangent = s — ^ . Since z = -, if we put - tor z in
^ 3/35

this equation, we shall have the required integral

(5.) Supposing -^ =:p,we will now proceed to show how

to integrate the equation y=xp + 'F (p), on the supposition

that F (j)) is independent of x and y ; noticing, that this

equation is called Clairaufs form.

By differentiating the members of the equation, we have

dx -^ -^ dx dp dx^

or, erasing the terms that destroy each other, we have
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Tins equation is satisfied by putting — — or dp ^:^ 0,

wTiose integral is j? = C = const, and of course y = Gx is

the proposed equation.

The preceding equation can also be satisfied by putting its

other factor equal to naught, which gives

^-^^ = 0^

consequently, if —-^^ is a function of^, by finding^ from -

this, and substituting its value in the proposed equation, we

shall get an equation between x and y, which does not

contain any arbitrary constant, and is hence called the sin-

gular solution of the proposed equation. Thus, if

y = xp + ap^, we have y — Cx+ aC*

for the integral, or ^ = — ^ = is the singular solution.

Similarly, if y =^a3 + a (1 + p^,

we shall have y = Oj; + a (1 + 0^)

for the integral, and — jr- is the singular solution.

Eemarks.—1. If we have the equation y = Pa; + Q, in

which P and Q are functions of ^, then, by difierentiating,

we shall get

dy _
,
xd? dQ , ,

<fP c?Q
^ ax ax dx ^r—p r—p

Taking the integral of this, by the form given in (4) at

p. 455, we have

-p
x=e - ^-^ //-^-4
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by changing y and dy into x and dx ;
then, eliminating

p from this and the proposed equation, we shall get the

integral between x and y.

2. It is manifest from what has been done in the first part

of this section, that in the application of the Differential and

Integral Calculus to estimate the changes of position of

bodies, which result from the violent and sudden actions of

powerful forces, we ought generally to take the differentials

of the variables on the supposition that they are independent

of each other, since the tendency of the actions of the forces

is plainly to introduce multiple points or cusps into the

motions of the bodies. Reciprocally, in finding the integrals

of differentials thus found, we ought to proceed on the sup-

position of the independence of the variables, as explained

at p. 484, &c.

(6.) From what has been done, we are naturally led to the

consideration of what are called the Singular Solutions of

Differential Equations of the First Order.

1. If F («, y, c) = 0, in which c represents a constant,

and we differentiate the equation, regarding c alone as varia-

ble, we shall have ^'^^2^'^'' do = Q;

then, ifj as in the example at p. 187, we eliminate c from the

equation F (a;, y, c) = and ^ ' ^' ^ = 0,
etc

when its dimensions exceed the first degree, the restilt will

(generally) be what is called a singular solution of the pro-

posed equation.

2. If we regard x and y as being functions of c, then, by
differentiating F {x, y, c) = with reference to c, we shall have
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ax do ay do do

dF (x, y, o)
or, since V = 0,

dc '

we Have

dVix,y,c)^^^dF{x,y,c)^^^^^^
dx do d/y do

Because this equation must evidently be satisfied so as to

leave ^JlJ^), or ^JMiA
dx dy

arbitrary, we must have either

^ — ^ — n-
do~ ''

do ~ '

which may clearly be used instead of

^ {«>, y, c) ^ Q
do

Similarly, i£p — -p , and we have the differential equa-

tion y {x, y,j>) — such, that F {x, y, c) = represents its

singular solution ; then, solving/" (», y,p)^=0 relatively to

c, we get the form c = {x, y, p), which reduces

F {x, y,G) = to the form F («, y, 6) — 0,

by using to stand for the function (x, y, p), or its equiva-

lent G.

If, for brevity, we represent the first member of this equa-

tion by u, then, since the function 6 may contain x and y,

by taking the differential of ^-w = 0, we shall have

/du du dd dp\ /du du dO dp\ , _ „
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which must clearly be satisfied so as to leave dx and d>j

arbitrary. Hence, we may clearly put the coefiicient of dx

or dy equal to naught, and shall thence get

du du do dp _ du du dO dp _
di^ dO-d^-di~ '

°^ dij'^ de'dp'd^~ '

which give
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wticli reduces ^- to nausrht, since —- or -p- in the divisor
dp ° ax dy

• . . civ
IS infinite. Hence, — = gives the values of p, that give

the singular solution. (See Young, p. 232, &c.) It may

be noticed if -w = F (sb, y, 6) — does not contain y, that

we must here regard x as being a function of y, regarded

as being the independent variable, and put p' = -r- for p.

(See Young, p. 237.)

EXAMPLES.

1. To find the' singular solution of

V = {x + y)p — xp' — (a + y) = O-

--- cZv
Here -v- = becomes x -\- y — 2xp — 0, which gives

2x '
^= 9.

which, being put for j? in the given equation, gives

(x + yY (x + yf , . (x + %/Y ,
. „

Hence, we easily get

x — 2/ = 2 Vax, or y =^ x — 2 VoS,

, . , . dy . a
which gives -^ = ^ =: 1 —=

.

ax Ydx
From y = £» — 2 Vax we get

X + y — 2x — 2 Vax and a + y = a + x — 2 Vox

;

and since p = 1 -= , we thence get
Vax

2{x — Vax)(l ~] — x(l ~) —{a + x— V^) =
\ Vax' ^ Vax'

2 (j/a; - Yaf — 2 {^x — ^a)- = ;
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consequently, since y = x —2 Vox satisfies tlie proposed

equation, it must be its singular solution.

2. To find the singular solution of

V = aP + Ixyp + {a^ — ar)p^ = 0.

From -5- = we get xy + {a^ — x^p = ;

wiich, multiplied by p and subtracted from the proposed

equation, gives a? + xyp = or ^ =
;

which, substituted in the proposed equation, gives

£»= + 2/' — a= = ;

consequently, since this satisfies the proposed equation, it

must be its singular solution.

3. To find the singular solution oixp — y = -/(as' + y'),

or, more properly, of {xp — yf = a? + y^.

Here v = a^p^ — 2xyp — a? = 0,

gives T- = 0, or its equivalent

a?p-xy = 0, or p = |;

which reduces the equation to

— y^ — a? = 0, or — y"^ =, y?^

as required.

4. To find the singular solution of

' ^p" — 2xyp -\-y^- — g?— p^a? = 0.

Here -^ = becomes
dp

2a?p — 2xy — 2a?p — Q, or — 2xy = 0,

which clearly shows that the question does not admit of a

singular solution.
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6. To find the singular solution of

y = (as'' — 2y^) J? — ixyj? — a^ = 0.

Here — = becomes {x^ — 2y'^)j> — 2xy = 0,

wMcli, multiplied byp, and the product subtracted from the

given equation, gives

— 2xyp — 03^ = 0, or ^ = X

2^'

consequently, substituting this in the proposed equation, we

have {x^ + 2if) a^ = 0, which evidently gives a? + 2y^ =
for the singular solution.

6. To find the value of c, which gives the singular solu-

tion of y — X + {c — Vf{o — xf.

Differentiating the equation by regarding c alone as

variable, we have

2(c-l)(c—a!y + 2(c-l)=(c-£B) = 0, or c—x+o—1 = 0,

which gives c = x+ 1
for the particular solution, since the

values c = 1 and c = a;, which also satisfy the differential

equation, clearly correspond to particular integrals.

7. To find a curve such, that the perpendiculars drawn

from a given point on its tangents shall be constant, or

equal to each other.
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Let be the given point, taken for the origin of the co-

ordinates, and OP for the perpendicular from the given point

or origin to the given line AB ; then, we may clearly suppose

Y —y = -^{X. — x), or its equivalent Y=^X + y —px,

to be the equation of AB, regarded as touching a circle

having OP = R for its radius, center 0, and Ox = », Oy = y,

for the rectangular co-ordinates of the point of contact P of

the tangent and circle.

Supposing y to decrease when x increases, we shall clearly

have — -^ = — p for the tangent of the angle yOF, and

y —px equals the part of the axis of y between AB and the

origin 0. Because Vp^ + 1 equals the secant of the angle

yOP, it is manifest from known principles of trigonometry

that we shall have

y ~ 'P^ = E = const
Vy + 1

for the invariable expression of the perpendicular from the

origin to the tangents to the sought curve, which must hence

clearly be a circle, having for its center and OP = E for

its radius. It is manifest that the preceding equation may
be written in the form

y = ^35 + E \/p^ + 1,

an equation that agrees with Clairaut's form of differential

equations given at p. 494, whose integral is there shown to be

y = «a! + E VW^n.
The singular solution of this gives

^~ V(R'-aO'
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VfHcli, being put for c, we have

603

y = +
E= - = yiW-a^),

and thence ar" + y° = R^

is the singular solution of the proposed question.

8. To find a curve such, that the product of the two per-

pendiculars from two given points on any tangent shall be

constant or invariable.

Let A and B represent the given points through which

the axis of x is supposed to pass, the origin of the co-ordi-

nates being at O, the middle point between A and B ; then

we may suppose that the sought curve touches one of the

tangents CD at the point B to the right of Oy, the axis of y,

and that OF and FB represent the x and y which corre-

spond to the point of contact of the curve and tangent.

Eepresenting AO = OB by a we shall have

AF = a + a; and FB = a — as

;

then, as in the preceding- question, supposing y to decrease

when X increases, we shall have — j) = the tangent of the

angle of inclination of CD to the axis of x, and thence

AC = y — {a + x)p and BD = y + {a — x)2>;
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consequently, by dividing these by y>{jp^ + 1), we, as in the

preceding example, get

y - (g + x)p y + {a - <«)P
Vkf + 1) Af + 1)

for the perpendiculars from the points AandB to the tangent

CD ; and thence, if V denotes their product, we shall have

y - (a + x)p y + {a-x)p _

or, by performing the indicated multiplication, we have

y^ — 2pxy — p^ (a? — x') _ „

for one form of the equation of the sought curve.

Solving the equation for y, we readily get

y =px ± 4/(&= + »iy),

in which m^ = a' + ¥; this being a differential equation

of Olairaut's form, we shall, as heretofore, get

y^Qx±V¥+ m?Q^

for its integral, being the arbitrary constant.

By taking the differential of this equation, supposing G

alone to be variable, we readily get

m \/{rn? — x')

for the singular solution. Taking — ix for ± &r in C, and

using + for ± in y, we get from what has been done

my + 5V = m-¥

for the equation of the sought curve, when the perpendicu-

lars to the tangents do not fall on opposite sides of the

tangents, and it is manifest that the curve is an ellipse

;
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noticing, if the perpendiculars are drawn on opposite sides

of the tangents, that the singular solution will clearly be

an hyperbola.

9. To find a curve siich, that the length of the normal

shall be a (given) function of the distance of its foot from

the origin of the abscissas. (See Lacroix, p. 466.)

Supposing X and y to represent the co-ordinates of any

point of the proposed curve, -it is easy to perceive that

yV1 + % and x + y%
represent the lengths of the normal and the distance of its

foot from the origin of the co-ordinates ; consequently,

^^^=/(' + »l)

will express the differential equation of the question.

It is easy to perceive that the equation (a? — af+ j'^= 0,

in which C is the arbitrary constant, by putting C =y (a)'

will satisfy the question, and be the complete integral, since

it contains the arbitrary constant C. For by taking the dif-

,2

ferential of
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agreeing -with the assumed differential equation. It is

manifest that {x — of + y^ = c

is the equation of a circle, the axis of x passing through its

center, a being the abscissa of its center, and

c=f{af
is the square of its radius.

. If we take the differential of

{x -af + f^c ^/{af,

regarding a alone as variable, we shall have

then, by eliminating a from

^^_af + f=f(^cty and - (x- a) ^f{a)f'{a),

the result will be the singular solution (called by Lacroix,

the particular solution) of the proposed differential equation.

Eemarks.—1st. If we put

c = Tca in (a? — (if + y^ — c,

it will become {x — af + i^ = Jca,

whose differential being taken by regarding a alone as

variable, is — (a; — a) = ^

,

k
which gives a = x + -,

and thence the equation (a? — a)" -\- y^ ^= Tea reduces to

\^f = Tc(x + ^^, or f=-k(x + ^^,

the equation of a parabola, the origin of the co-ordinates

being at the focus of the parabola ; noticing, that this is a
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singular solution, comprehended under the general singular

solution given above.

2d. The equations

{x-af + f=f{af and - {x - a) ^f{a)f' (a),

when a is eliminated, or supposed to be eliminated, from

them, give,, when taken together, a result which is some-

times called the general integral of the differential equation

while {x — of + y"^ =^f{af,

which involves the arbitrary function f{af, is called the

complete integral of the same equation. Thus,

£BS° — ys + a — and 2x3 — y =: 0,

given at p. 187, maj be supposed to correspond to

{x-af + f=f{af and - {x- a) ^f {a)f {a);

and y^ = 4:ax, at p. 187, resulting from the elimination of s,

corresponds to the elimination of a from the preceding

equations.

10. To find the equation of a curve which cuts a curve

having a variable parameter, at any proposed angle.

Let OB represent the proposed curve when referred to its
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rectangular axes as in the figure, and acb tlie cutting curve,

when referred to the same axes ; then, if

in the proposed and sought curves, stand for the tangents

which the tangents to their arcs at their point c of inter-

section make with the axis of x, we shall, from a well-

known formula of trigonometry, get

tan ^

i+^'l

for the tangent of the angle which, the sought curve makes

with the proposed curve at their common point of intersec-

tion, which is supposed to be a given angle
; consequently,

representing tan by a, we get

dy _
- , and thence have -7- = ^-

;

;

,
ax 1 — op

and if <t>
is 90°, or a the tangent of a right angle, it becomes

infinite, and the preceding equation reduces to -^ = ,

.

Thus, if y = 5a! is the equation of the proposed curve, it

gives

h =jp' = -
, and thence -^ = —

» dx ^ y'
1 — a^

X

or its equivalent {x — ay) dy — {y + ax) dx = 0.

Because this equation is reducible to the form
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41)

1 +
(I)'

xdx + yd/y
"" ^ + f '

by taking tbe integral, and using a log for the arbitrary

constant, we bave

tan-i ^ = a log Va? + y\

Because log represents the hyperbolic logarithm, if A
stands for the base of a system of logarithms whose modu-

lus is a, by writing Log for a log, by the nature of loga-

rithms, the preceding equation may be written in the form

Log A'"» -1 ^ = log C VoF+'f,

in which Log denotes a logarithm taken in the system whose

base is A. Putting

tan- - = and Vx^ + y^ — r,

by returning from the logarithms to their numbers, we shall

get A* = Gr for the equation of the sought curve. If we

suppose r = 1 when 6 = 0, the preceding equation gives

C = 1, and thence the preceding equation is reduced to

A' = r, which is clearly the logarithmic spiral, ^ being the

constant angle at which the radius vector r cuts it, and A
the base of the system of logarithms, represented by it,

a = tan <p being the modulus. (See p. 136.)

Eemaeks.—1. If =: 90°, a = tan ^ =' infinity.

2. Hence the equation

d^

1 +
(I)'

xdx + ydy
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clearly shows that we must have xdx + ydy = 0. By
taking the integral of this, we clearly get x' + y- = C,

which evidently shows the sought curve to be a circle, C

being the square of its radius.

For another example, we will show how to find the curve

which cuts a series of parabolas whose general equation is

y" — ax"" at right angles.

From what is shown at p. 509, we must take -^ — >

^ ' ax ^
dxi

and substitute in it the value oi p' = -p , as determined

from the equation of the proposed curve, and then eliminate

from the result the a as found from the equation of the pro-

posed curve.

Thus, we have -^ = — a ——r

,

ax n y"-^

which, put for^', reduces

^-_1 to ^y _ ^ y"~'
.

dx p' dx

whose members, multiplied by the corresponding members

of the given equation, we get

y"di/ _ n y"-^af

dx m x"^~^ ''

or its equivalent mydy + 7ixdx = ;

whose integral is clearly the ellipse

my^ + nsi^ = C,

in which the constant represents the product of the

squares of the semi-axes of the ellipse.



SECTION vin.

INTEGKATION OF DIFFERENTIAL EQUATIONS OF THE SECOND

AND HIGHER ORDERS, BETWEEN TWO VARIABLES.

(1.) The most general fonn of a differential equation of

the second order between two variables, may evidently be

supposed to be reduced so as to contain a?, y, ^ , -p^ , to-

gether with constants.

(2.) Supposing -w = to be the primitive or integral of

the second order of the preceding differential equation, con-

taining the two arbitrary constants, C and C, which have

clearly resulted from two successive integrations of the pro-

posed equation, then, by taking the first and second dif-

ferentials of M = 0, regarding x as being the independent

variable, we shall have the three equations u — 0, du = 0,

<^M — 0; consequently, eliminating and C from these

equations, we shall clearly obtain the proposed equation of

the second order between x, y, -— ,
-~

,
which is clearly

independent of the constants C and C. Now, if we elimi-

nate C from M = and du = 0, we shall get a differential

equation of the first order denoted by V = 0, involving the

constant C ; and, in like manner, by eliminating C from

w = and du = 0, we shall get an equation of the first order

denoted by V = 0, involving the constant C It is easy to

perceive that if we eliminate C between V = and dV = 0,

or eliminate C between V = and dV = 0, we shall
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obtain tlie proposed differential of the second order, so that

V = and V= will each be a differential equation of the

first order of the proposed equation of the second order.

Hence, if we dvminate -J- from V = cmd V = 0, it is

clear that the result will he u = 0, the primitive of the

proposed differential equation of the second order. (See

Lacroix, pp. 292 and 293.)

Thus, supposing y + aic + J = to represent the primi-

tive (or second) integral of a differential equation of the

second order, having a and h for its arbitrary constants, then,

dii
by differentiating it, we get -4- + a = 0, which is said to be

obtained from the primitive by a direct differentiation. But

if we divide the primi

whose differential gives

xdy — (y + h)d3; = 0, or y — x~-+h = 0,

which is said to be obtained from the primitive by an in-

direct differentiation.

Thus we have obtained the differential equations

-^ + a — and y — x~+i = 0,
dx " ax ^

which are both of the first order, the first containing the con-

stant a, and the second the constant 5. If we differentiate

these equations, they wiU concur in giving -=^ = for the

differential equation of the second order, of which the two

preceding equations will be the first integrals ; and if we

eliminate -^ from
ax

if we divide the primitive by a;, we get + a = 0,
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^ + a = and y—x-j--ri = Q, we get 2/+ aa3+ 5 = 0,

wHch is the primitive or second integral of
-j-f-

= 0.

In like manner, it is clear that a differential equation of

the third order has three differential equations of the second

order for its first integrals, &c. ; and so on, to any extent

(3.) "We now propose to show that any differential equa-

tion between two variables, has an integral, such, that the

wth order, in its most general form, contains n arbitrary

constants.

For conceiving the equation to be solved with respect to

the differential coefficient of the wth order, we shall clearly

get -T~ — a function of

dy cPy cZ"-' y
' ^' dx' dx"' • • • dx^-''

which, by successive differentiations, gives

cZ"-^V e ^- c dy d?y d^y
J—--, — a function of x, y, -^, -^4, -^

;

dx" + ^
' ^' dx' da?' dal^'

d"*^y . . . dy d\ c?' +V^-= afanctionof x, y, -£, J, ^,
and so on, to any reqiiired extent. It is hence easy to per-

ceive that, by obvious substitutions,

d^y d"- + V cZ" + =y

d^ ' 'd^"^ ' dx!" + ^

'

are all known functions of

&c.,

dy d^y d" ~ ^y
^' ^' d^' d^' d^f^^'

which clearly (generally) consists of n terms.
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From Taylor's theorem (see p. 15), we shall have

^=^ + ^^' + 5^ 1:2 + 51 r.2.-3+'^°-'

consequently, if x^ is such a value of x as does not make

di/ d}y . d^-^y
^' tx' ~da?' dnif'

in the preceding differential equation, any of them, infinite

;

then, supposing a;, to be substituted for x in

dy d^y d'^-'^y

y^ ix' da?'
^^^'

and that A, Aj, Aj, A„_i, represent their result-

ing values, if we change A into x — x^ in. the preceding

expansion, and change y' into y after the substitutions of

dy d^y d/'-hj
the values of y, -^-, ^^, ^;rz„

we shall have

y = A + A'{x-x,) + A, ^^^ +

A,._i(g:-a;i)''-^ d''y_ {x - x^f

1.2 (ji-l)^ d3^ 1.2 n^' '

for the integral of the proposed differential equation, whose

first n terms clearly contain A, Aj, &c., for the n arbitrary

constants required.

(4.) Any differential equation of the »ith order between

X and y must have n differentials of the order n — 1 for its

first integrals.

For, as in the preceding proposition, Taylor's theorem

gives 2/' = 2' + i^ + ^Ji:2 + ^i:2r3+'^°-'

which, by changing h into — x, and representing the value
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of y'^ corresponding to £» = by A, becomes

If in tbis we cbange A into Aj, Aj, &c., y into -j-, -t4 i

&c., we shall, in like manner, get

/. _ dy ipy d?y a? d*y a? .

. _ cPy (Py X d*y ^ .

and so on, until we obtain n — \ equations. If we now
eliminate from the n equations wbicb we have obtained,

dr-y d'^ + '^y d^ + ^y

dx" ' <^a!" + " dx"
^'^

'

and so on ; the results will clearly be the first or {n — l)th

integrals of tbe proposed differential of the wtli order, as

required, wbicb bave A, Aj, Aj, &c., for tbeir arbitrary

constants.

Thus, if ?i = 2, the first integrals are

and

^^=1 -•^(^' ^' S) i +/' (^' 2/, I) ^2 -' &«

(See Lacroix, p. 297.)

(5.) We now propose to show how to find tbe integrals

of differential equations of the second order between x and

y, when, besides -^^ , they contain x or y, ot ^ , or when,

besides -r4 , they contain x and -^^ or v and ~-
, by tbe

dx^ •' . dx ^ dx •'

common methods. (See Young, p. 243, &c.)
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1. To integrate a diiferential equation of tlie form

^ («.§) = »•

Solving tbe equation with reference to -r^ , "we evidently

get -T^ = X = a function of x,

whicli, multiplied by dx and integrated, gives

and this multiplied by dx and integrated again, gives

y = fdxfxdx + Ca; + C = rXda? + Gx + C.

Thus, if X = aj", we have

y (?i+ 1) {n + 2y

and thence y = ^_^^^-^_ + C. + C
2. To integrate a differential equation of the form

(^' J) =

Here we have -rp = Y, which, by putting

-^ =p becomes -j- = Y,

whose members multiplied by

dy
,

dp ^r^y

whose members multiplied by dx and then integrated, give

^= fYdy + G oftheform -|' = Y'+0.
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From this we immediately get —̂ = o /y/ , rr and thence

1 _ 1 _dx_ 1 _ r ' dy

p~^~dy~ V^(J' + G)
°'' '^-y 4/(2Y' + 2C)'

dx

which is of an integrable form.

Thus, if Y = — -, . we shall have

and thence we readily get the form

/ady _^ r ^y

*'(«'-«''V|/|i-(|)'}
dy

noticing, that C^ has been used for the first arbitrary con-

stant.

3. To find the integral of the form ^ (^ .§) = 0.

or of its equivalent F (^, -^j =0.

The equation solved for -^, gives -^ = P == a fanction of

p, and then dx — -~, an integrable form, whose integral will

be expressed by « =
/ ^ ; and, since -^ =^, we also have

dy =:pdx ='^-=s- ) an integrable form, whose integral will be

expressed by the form y— /'^p • Hence, eliriiinating ^
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from the equations

:/f and ,= /^^.

we shall get the required relation between x and y. Thus, if

dp
5
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y = I pdP gives the relation between y and p. Hence,

from the elimination ofp from « = P and y = j pdP, we

shall get the relation between x and y.

If F {x, p, o) can not be readilj- solved for j? or cb, we may

put
-J-

for^, and then try to integrate the result, by the

methods for integrating differential equations between two

variables.

or its equivalent 2a3& — ——
{1+ff

has a^ + C = "''^

,
- {1+ff

for its integral ; and by subtracting the squares of the mem-

bers of this from a*, we have

^ ^ 1+/' ^ ^ ^ 1/1 +y'
consequently, dividing the members of

0?+ G _ '^y

Vl + p"

by the corresponding members of the preceding equation,

a? + Q
we get V =

, , and thence

•^ '^ -^ Va'- {x' + Gf

r (a? + G)dx
or y — I

-7-^ , ,

•/ Va*-(ar'+G7
an integrable form.
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For another example, let there be taken the equation

^ + \dx}
^"^ dxdb?-°'da?^ ^ ^ \dtc)'

or its equivalent

Multiplying the members of this by dx and dividing the

products by 1 + ^^, we readily get

dx + -f xdp = dp,

which is a linear equation, agreeing with the equation at p.

455, when we put x for y, and^ for x, and change P and Q

into :r-^—7. and
l+i'' Vl + p^'

Hence, from the integral given at p. 455, we have

X = 6~/i+j>' (a / e-^^T155 P
. Q)

\ ^ Vl+f I

\ '' vr+y I

Because

_ g-iog^'d+j") and Vr+y = e'<>eva+;")j

the value of x is clearly equivalent to

Vl+p"'

By taking the diiferential of this, we have

(l+y)i (l+^f
which, since dy =j>dx, gives
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, _ a^pdp Gp^dp _ apdp Gdp_^ Cdp

^ ~ (1+^f
~
(1+/? ~ 0-+rf

~ '^y (1+ff
'

wliose integral gives

y= - Op „ ^^„p_±^^l±f.
Vl~+y Vi + p

noticing, ttiat we here use log pf, for the arbitrary constant.

By eliminating p from x and y, the equation between aj and

y will be found as required.

For another example, we will find the integral of

\ dos^ I da? dx'

or its equivalent 2 (a'p? + x^) dp = xpdx,

which is clearly homogeneous in p and x.

By putting x=:ps, the equation is easily reduced to

2 (a= + s^) dp = s {zdp + pdz\ or -^ = 2^+^^ '

whose integral is

log J?
= log C 4/(2a= -{ z\ or ^ = C |/(2a^ + s=)

;

consequently,. from x^pz we have'

X — GzY{2a? + s=).

From x^=pz we have

p = ~ = GV(2a' + ^,

and thence, from dy = ^(fa;, we have

dy^C\/{2a' + s')dx;
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and from x = Gs ^/ (2a= + 3=),

Gs^ds
which gives dx = G ^Z (2a' + ^)dz + ,^^^ ^;. ,

we get dy = G' {2a^ dz + 23= dz\

a
whose integral is y = q C^2(3a' + s^) + G'.

o

If we now eliminate s from the values of x and y, we shall

get the sought equation between x and y, as required.

5. To integrate an equation of the form

p ( ^ ^) =
V' dx' dxV '

or its equivalent F (y, ^, -^) = 0.

Because dx =: —, we have the form reduced to
P

l?(.,.,f) = 0;
dy

.

and it is clear that we may now proceed in much the same

way as before. Thus, to integrate

V^y dxjdx^- V^ dx'Idx'

or its equivalent

By putting-^- for -^ , the equation is easily reduced to

(« + yj?) ^ = 1 + 1>^ or {a + yp) dp = {\ + f) dy,

which gives the linear equation



SECOND AND HIGHEK 0EDEE3. 523

Comparing this to the linear equation at p. 455, we have

P- and Q= -"" 1 +y ^ 1 +i>-'

and for dx we have dp ; consequently, we shall, from the

formula at p. 455, get

f Pdp I p f -pdp J \

y = / 1+^= [a J / 1^^"
^-j^-^ dj> + G)

or since

y(l +/) ^ e'°s *'^^^" and ^ = e-'"^ ^a + "'^

r 1 + ^^

we shall have y — op + G ^/(l + p^)
;

and from dx — — we shall get

^,^^ + C—^-^,
.

i> 1/(1 +i?)
whose integral is,

X = a logp + log C O + VTT"^)

= log [p" {G'p + C yi H- i^O "].

Eliminating^ from « and y, we shall get the sought equa-

tion between x and y.

6. When a differential equation between x and y is of the

second order, and x is taken for the independent variable,

then, regarding dx, dy, and d^y each as being variables of

one dimension, when the proposed equation is homogeneous

in terms of its variables and their differentials, it can be re-

duced to a differential of the first order, which does not

contain x, by putting y =^ vx and -~ = - in it. For if n
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denotes the degree of komogeneity of the equation, it is

plain, since -r^ is clearly of — 1 dimensions, that it must

have a factor of n. + 1 dimensions ; and since vx is put for

y, it is e\rident that wherever y is, a?" must enter as a factor;

it is also evident, since -^ is of no dimensions, that it must
(tic

have x" for a factor.

Because the remaining terms of the equation are of n

dimensions, it is manifest that after the preceding substi-

tutions we may divide the equation by as", and thus free it

of X.

Thus, to find the integral of

xd^y — dydx,

we divide its members by dse', and thence get

dy? dx '

in which we put -^ = ^ and -^ =. p,^ OKT X dx •^'

and thence get ? = i'

!

and since ^ = " is the same as -4- = ^, by putting
dar X dai x' •' '^ ^

p for q, we thence get

dp _p dp _ dx

_

dx~ x' p ~ X '

and from y := vx we have

^ , J . 7 dx dv
ay = pdx — vdx + xdv, or — =

,^ -^ ' X p— v^
and hence get

dp dv , , ,

p^^ZIli^ °'' Pdp^pdv + vdp;
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and taking the integral of this, we have

^ =j>v + C, or / = 2j)v + 20.

Also, by taking tbe integrals of — = — , we have

log X = log pC, or X = ^C, which gives p = tu-

Substituting this value of p in ^^ = 2pv + 20, we get

x' = 2G'ayv + 20C'S

which, since y = aw, may; clearly be represented by

x' = 20y + 0',

when and 0' represent the arbitrary constants.

Otherwise.—Since the equation

cPy dy . T -n .
^-^ ^

a? T^ = -/- IS reducible to — = -y—

,

aar das x ay '

dx
by taking the integral we have

log x = log C -^, or £B = -^ , or xdx = Cdy,

whose integral -3=0^ + const, gives ar" = 20y + C,

the same as by the preceding process. Again, if

x^y = ady"" + U^, or '^^ = « ^2 + 5.

then, putting " and^ for — and -^, we have g' = ap^ + 5,

T, dp q dx dp
Because -^ =: ^, or — = ^^

,

ax X X q ^

by substituting the value of q, we shall have
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dx _ dp _ dp ^ i

"whose integral gives

Vab ^ i

or we have Gx = e
"''

,

and thence x =^ -pz

C '

in which e is the hyperbolic base, and C is an arbitrary

constant.

Since dv = pdx, from — = —„ .
^ -^ ' X af + b

we easily get dy =
^ , x x;

and thence, from the substitution of the value of x, we get

—^ tan Pi/r:

and integrating this, we get y in a function of^, with a new

arbitrary constant. Hence, eliminating p from the values

of X and y, the equation between x and y will be determined

as required.

7. Finally, it may be added that there are two classes of

equations of the forms

(dy d—'y) _ /d"y d'-'y\ .

in which n is supposed to be a positive integer greater than

2 ; such that they can be reduced to the forms of equations
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of the first and second degrees, which we have heretofore

seen how to integrate.

For, by putting -j-^r^ — "W, in the first of the preceding

equations, it reduces to ¥ l-r- , u\ — 0, which is clearly

of the form of a differential equation of the first order be-

tween V, and X, which gives w = X = a function of x, and
»n-l/n—

1

Xdx^-K

To integrate the second of the preceding equations, we put

dr--\ , ^, ^ dy d:^u

and, by substitution, the equation becomes

/cPu„ /d-u \

an equation of the second order, which we have seen how to

integrate at p. 516. Hence, we shall have w = X = a

function of x ; or, restoring the value of u, we have

d"~^y pn—2

^^^ = X, which gives y = J Xcfa;"-=.

Thus, to integrate -j^f-^ = 1, we put -A = r, and thence

get r -^ — t, or rdr = dx, for the transformed equation.

By taking the integral of the preceding equation, we

r'
have — +0 = x, or r = V2 (x — (J).

Denoting the differential coefficient of the next inferior

order to ?• by q, we shall clearly have

-dq = rdx = r^dr, or q — -^ + Ci,
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and since dp = qdx = (^ + Cij

or p =

consequently, from

rdr.

^ = 375+172 + ^=5

375 + 172 + ^7 ^'^^'

weget 2,=.^-^-^ + ^-^- 4-^ +

for the complete integral, in which r = V2 {x — C).

For an example of an integral of the second order, we

will take iK = ^K-
ax* ax'

Puttmg y = ^, we have ^ = ^,
and thence the equation is reduced to

d^_
da?~^'

whose members, multiplied by dq, give

g = ^= + C^ or d^=-^=',
(fas' ^ 1/^3 + C»

whose mtegral is a; = log ^
^7 ,

\j

in which log -^, is the arbitrary constant introduced by this

integration. From

a = -^— and. dx = ^—

we easily get dp = qdx = "
L—

and by taking the integral

^:=4/^^C- + C' and dy = pdx =z dq + C'dx,
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whose integral is y — g \- Cx + C" ;

e being the hyperbolic base,
^

X = log ^-7—— is equivalent to CV — q+ Vq^+ OS

wliicli giyes

(CV - 2)^ =• 2= + G% or C'V^- 2CV? = C^,

and thence o = —r —^; e
-

"'.

From the substitution of q in y = ^ + C a; + C", we have

which may more readily be represented by

y=Ce*+C,e-M-C2a5 + C3,

C, Ci, C2, and C3 being the arbitrary constants.

(6.) We will now show how to hnd the integral of a linear

equation of the nth order, represented by

J+A^ +B^ + +Mj+% + X = 0,

iu which the coefficients A, B, C, &c., may either be constants,

or they may contain, the independent variable x without y.

We shall determine the general form of the sought integral

by integrating the more simple equation

^^+A^„^+B^ + +mJ +% = 0,

which is independent of X, and the coefficients are supposed

to be constants.

Supposing e to be the base of hyperbolic logarithms,

and m constants to be determined; if we represent y by

Ce""° by the rule at p. 56, we shall have

23



5p0 DIFFERENTIAL EQUATIONS OF THE

dy — Ode"''' = mGe""'dx, or -^ = mCe"",

and in like manner

dx^ ' da^

and so on, to any required extent. Hence, by substituting

the values of ^, ^, ^, &c.,

in tbe preceding equation, and rejecting the factors C and

e"*^, which will be common to all the terms of the resulting

equation, we shall get the algebraic equation of the nth

degree,

OT" + Am"-i + Bot"--' + + Mwi + N = 0, •

which, from the well-known theory of equations, must have n

roots. Solving the equation, we shall have the n roots, which

may be denoted by wij, wij, mj, and so on, to m„ inclusive
;

and since each of these roots satisfies the equation, if Cj, C2,

C3, and so on, to C„ inclusive, denote the const., then, if the

roots are unequal, we shall clearly have

for the complete integral of the proposed equation ; as is

manifest from the circumstance that each of its terms satis-

fies it, and of course all its terms, conjunctly, will satisfy it;

and, since y contains n constants, or a number equal to the

order of the proposed differential equation, it evidently re-

sults that the preceding equation between x and y must be

the complete, integral required. It may be added, that, so

long as the roots of the equation are unequal, the integral

will be of the preceding form, whether the roots are all real,

or some (an even number) of them are imaginary. If two
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of tte roots of the equation, as m.^ and m^, are imaginary,

they may be expressed by the forms

a + h V— 1 and a — bV-1,

since (see p. 440 of my Algebra) the imaginary roots of

equations are known to occur in pairs of the preceding

forms ; consequently, for the terms Cie"*!^ + G^e'"''' of y, we

may write

and since (see p. 58),

e'
ix^-l = cos bx+ V — 1 sin ix

and e-''^^ -'^ = cos hx — V — 1 sin hx,

this is easily reduced to

e'"' [ (Ci + Ca) cos bx + (Ci - C^) V^^ T sin lx\.

Since we may clearly assume such values for the constants

Ci and Cj, that we shall have

Ci + Oj =p sin q and (Cj — Cj) V —1 =-p cos §,

we shall thence change the preceding expression into

jpe"^ sin (Ja; + q).

Hence it results that we have reduced the terms

Cie'"!^ + Cae"*^ of y to the form pe"^ sin Q>x + q),

and it is clear that every other corresponding pair of im-

aginary roots will admit of like reductions.

It may be noticed, that if our equation has two or more

equal roots, our method of finding the equation between x

and y will fail for the equal roots, and will be applicable

only to the unequal roots. Thus, if in the equation between
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X and y we suppose the root m, equals the root 7»j, the

equation will become

y = (C, + C) e"!^ + 036"*=^ +, &c.,

which clearly shows that the two constants Cj and Co are

actually only equivalent to a single constant represented by

Ci + 0-2, so that the equation will be defective in not having

a sufiEicient number of constants, which ought to equal n, the

order of the proposed differential equation.

The defect may easily be remedied by writing the terms

containing the equal roots in the form

Cie'"!'^ + C.2xe"'i'';

if three roots, as m^, m^, m^, are equal, they must be

written in the form

and so on ; observing, that the index of x in the last of the

terms of this kind is less by a unit than the number of equal

roots. To be satisfied as to the correctness of what has been

said, it will be sufficient to apply it to the integral of the

equation g +A^ + B | + Cy = 0,

which is clearly a particular case of the general differential

equation, obtained from it by putting 3 for n in it ; conse-

quently, the algebraic equation at p. 530 will here become

m' + Am" +Bm + G = 0,

which, we shall suppose, has a pair of equal roots represented

by TOi — 7W.2 ; then, shall

y = .Cie'".% y = Caje^-x^, or y — C^e""^" + C^to"'.^,

each satisfy the preceding equation of the third order.
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To show what is here said, it will evidently be sufficient

to show that the differential equation is satisfied by putting

y — G-iXe'^i', which gives

dx 'ax'
cPv

and -T--, Cam/aie"' "= 4- SC^miVi^
aar

Hence, from the substitution of these values in

we get

C^xe'^i'' (m/ + Am^ + B?ni H- C) +
G^e""^" (3mi= + 2Ami + B) = ;

consequently, because Wi is one of the equal roots of the

algebraic equation at p. 532, we have

m^ + A???/ + Boti + = 0,

and because 3w/ + 2Ami + B

is the first derived or limiting equation of this, one of its

roots must also equal w}, and thence we also have

S???!-" + 2A??ii H- B = 0, and thence y = Q^e"'i'

satisfies the equation as it ought to do. (See any of the

treatises on Algebra, on the equal roots of equations.)

It is hence easy to perceive that

y = de""!^ + CaTO""!^ + 036'"=^,

must satisfy the equation

since each of its terms satisfies it ; and because it contains

three arbitrary constants it must be the complete integral of

the equation.
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Because a reasoning similar to the above is applicable to

each term of y that results from any number of equal roots

in the equation at p. 530, it follows that the terms of y re-

sulting from any number of equal roots will be represented

according to the directions given above.

If the equation at p. 530 has four imaginary roots, such,

that two corresponding roots of each form, as a + Zi /— 1

and a — h V— 1, are equal ; then, according to what has

been shown at p. 531, and to what has been shown above,

. they may be expressed by the forms

e"" [(Ci + C^) cos hx + (Cs + Ctx) sin hx]
;

and it is clear that we may proceed in much the same way,

when the equation contains any number of pairs of equal

imaginary roots.

Hence, having found

y = Cie'"!'^ + 0.26'"^ + C^e'"^ + + G''e"'^

= Cm + C,y, + C32/3 + + cy,

for the complete integral of

d^y
, , d"-'y „ c?"-V ,, dy

whether A, B, &c., are functions of x or not, yi,y2, &c., being

called particular values of y, since each of them is supposed

to satisfy the above equations ; then, we may assume

y = Giyi + G,y^ + + Cy
for the complete integral of

d^y . d"~^y T, (^"-V ,,(fv

in which X is supposed to be a function ofx; by supposing
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tlie arbitrary coastants Ci , Cj , O3 , and so on, to vary, by

subjecting them to the following conditions, which we will

illustrate by the case oi n = 3.

Thus, the equation to be integrated is

whose integral we suppose to be represented by

y = Ci2/i + C^y^ + Gsi/s,

supposed to be subjected to the following conditions :

—

1st. "We have

^ = ^' + C ^' + C^
dx ^ dx ^ dx dx'

by assuming pidGi + ySG-i + VidG^ = 0.

2d. We have

^ - ^'W ^ ^' d¥ ^ ^'1^'

by assuming the equation

dCidr/i + dGidy^ + dOsdj/s = 0.

3d. We have

by assuming

dGid!'yi dG^y^ dGS^
. y- _ r.

da?
"^

da?
"^

do? + ^ - "•

Hence, if we determine the constants from these three

conditions, we shall have

y — Ci^i + C22/3 + Cs^a

for the complete integral, since it will (generally) contain three

constants, as it ought to do. It is manifest that we may
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proceed in tlie same way to find tlie integral, when the pro-

posed difierential equation consists of any number of terms,

or is of any order.

Eemakks.—1. For the preceding beautiful method of

finding the integral of

^!+A^+B^„-,^ + +^J + ^2/ + X =

from that of the same equation, whenX is omitted, by means

. of the variations of its arbitrary constants, we must refer

the reader to p. 323, vol. i., of the "Mecanique Analytique"

of Lagrange, the inventor of the process ; reference may also

be made to p. 826, vol. ii., of Lacroix ; to Young, and to

most of the late writers on physical astronomy.

2. On account of its importance in determining the lunar

motions, we propose to give a different and very simple

method of finding the integral of

-r-. + m?u + P = 0,
dv-

which is an equation of the second order, in which P may
involve v or be independent of it, according to the nature of

the case.

By putting

sin rav = s and cos 7nv = s', we have s' + s'^ = 1,

which gives sds + s'ds' = ;

and by taking the second difierentials of the equations

sin mv = s and cos Tfiv= s',

we also have the equations

—5 + m^s = and -5-. + mV = 0.
dip dv^
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Multiplying tlie proposed equation by ds, and tHe jBrst of

these by du, and adding the products, we have

'^J^^ + „,^d(,su) + Fds = 0,

whose integral gives

dsdu . /*_

,

A ,—j-j- + m'nu + / rds = mA. = const.

;

:

and in like manner, from the proposed and the second of the

preceding equations, we have

ds'du
+ mVu + I

Fds' — niB = const.
dv^

Multiplying the first of these by s, and the second by s', and

adding the products, since

sds + s'ds' = and s" + s'^ = 1,

we get in'u + s f
Fda + »' / ^ds' = m {As + B«'),

or mu = A sin mv +

B cos mv — sin mv I P cos mvdv + cos mv I P sin mvdv,

for the sought integral. If

_ M + m 1

such that M and m represent the masses of the sun and a

planet revolving round each other at the distance r, G^ rep-

resenting the square of twice the area they describe around

each other in the unit of time, and v the angle r makes with

a fixed line, then, if m — 1 , our integral becomes

1 . . -n M + m
M = - = A sm « + B cos -y H ;=:,—

.

r G'

K in this we put

23*
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C- = (M + w.)^, Kp = e COS «, and Bj? = e sin to,

we shall get r = :;
^-7 r^

1 + « cos (-y — w)

for tlie equation of the curve described by m in its revolu-

tion around M, regarded as being at rest, which is clearly an

ellipse when e is less than unity. (See Whewell's " Dy-

namics," p. 27.)

(7.) If a differential equation between x and y involves

only the simple powers of y and dy in separate terms, and

has other terms that are independent of y and rfy, which do

not involve fractional or negative powers of a;, then the

proposed equation may be greatly simplified by differentiating

it successively on the supposition that y is a function of x

regarded as the independent variable.

For, since (according to what is shown at pp. 11 to 13)

dx is constant, the terms that do not contain y and dy will

disappear from the equation in consequence of its successive

differentiations.

It is hence manifest, that if we integrate the first of the

differential equations that is freed from the preceding terms,

we shall (often) readily find the integral of the proposed

equation. Thus, taking

ady = ydx -f- GxMx, or its equivalent —- — y = Ci^

(from p. 217 of Simpson's " Fluxions"), by taking its suc-

cessive differential coefficients, regarding x as being the

independent variable, or dx as constant, we have

<f// rf^_ „ „^_^_oC and a'^*^ '^^ -

thence to find the integral of the proposed equation, we must

find y, such that it shall satisfy
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dx^ d;i?

If e represents the base of hyperbolic logarithms, and D an

arbitrary constant, then y = De'"", in which m is constant,

reduces the preceding equation to

aDm*e""' — Dw'e"""^ — 0,

1 -

which gives m = -; and thence y = De", is the first

integral of the preceding equation, and of course a part of

the integral of 'the proposed equation.

Since a^,-p, = 2G
ax" ax'

is clearly the first direct integral of

dx'' da^~ '

s

having 2C for the constant, it is manifest that y = De",

having D for its constant, must represent what is called an

indirect integral of the same equation.

To find the remaining terms of y, or the proposed integral,

since it is -clearly to be regarded as the integration of an

equation analogous to

a^ _ ^ ^ 2C
da? dd?

'

which being of the third order of difierentials, its complete

integral must contain three arbitrary constants; conse-

quently, we may represent the sought terms by

y = Aa^ + Baj + 0,

in which A, B, C, are the constants, and the integral is evi-

dently of the proper form, since it must be supposed to have

vanished from the equation
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in consequence of the successive differentiations of tlie pro-

posed equation.
(jr'ij

To find A, B, C, we substitute the values of y and -j- for

them in the equation

and thence get

(A + c) 0!= + (B — 2aA) » + C — aB = 0,

•which must clearly be an identical equation ; consequently,

we must have

A + c = 0, B - 2aA = 0, C — aB = ;

which give

A = — c, B = 2«A = — 2ac, C = aB = — 2a^o.

Hence, from the substitution of these values, we have

y — Kx- + Ba! + C=— c(:ir' + lax + 1a^)\

consequently, adding this to the preceding value of y, we

have y = De^ — c (a3= + 2aa3 + 2a')

for the complete integral of the proposed equation, which is

the same as found by Simpson.

By a like reasoning, the integral of the differential equa-

tion ady = ydx + cafdx,

will be found to be expressed by
X

y = T>e'^ — c

[aj"-fwaaj"-Hn(n—l)aV-''+w(»— 1) (w—2)aV-»+ &c.],

which agrees with Simpson's integral; noticing, that the
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integral will consist of an unlimited number of terms, when

n is not a positive wtole number.

(8.) The integral of a differential equation of the second

order between x and y is often readily effected by inter-

changing the dependent and independent variables, or, which

is the same (see p. 36), since --— and -=- are equivalent to

by writing

_^^ for d^y, or -^1^ for d^x.

Thus, by taking

dxdy — xd}y — ad?y j- =

(from p. 183 of Yince's "Fluxions"), and writing ^

—

for d^y in it, we get

, , xdycPx adiidJ'x xdy^
^"^y + -^ + -i /- = «'

or its equivalent

d^£' + xd'^x + ad^x r- = 0.

Because cfar* + xd^x = d{xdx),

and that dy is constant or invariable, by taking the integral

of the preceding equation, after dividing by dy, we get

xdx adx *^ _ /-I

"^ "*' "^ ~ 26 ~ '

an arbitrary constant. Since this eqiiation gives

, "iibxdx 2abdx

2bc + x^ 2bc + x"
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by taking the integrals of this, and using C for the arbitrary-

constant, we have

y+ C'—log{2bG+a^f+a^/^ x a.Tc(rd=l and tan—^j

which agrees with Vince's integral after the constant C is

added to his value of y.

For another example, we will take the equation

x(Px — dydx = 0,

which is such that the method of integration does not

readily present itself to the mind.

By substituting -5— for d^x in this equation, it becomes

j-^ X— dydx =0 or dx ^ -\ = 0,
ay " dy^ X

in which dx is constant or invariable. Since this equation

is the same as

'^ d) + '^ ^^°° "^^ = ^'
\dy/

by integrating and using C for the arbitrary constant, we have

-3Z + ^0S<^=G or dy =
dy ° ^ loga; —

C

in which the variables are separated, and

dx
y log X — C

indicates the integral. Putting

(Jnr*

log CB— C = s, we get — = c?3 or dx^= xdz,

which, since log oj= C + ^ gives a; = e° + * = eV, and re-

duces the preceding integral to
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y=e°J— .

which (see p. 51), gives

in which C is the arbitrary constant. If y = when s = 1,

and

we have C = — ae°, and thence

which will clearly give all the values of y that correspond

to those values of z or log x — G that do not dLGfer greatly

from unity, or that are positive and not very small. (See

Lacroix, p. 512, vol. iii.)

(9.) Sometimes a differential equation can be integrated

more, easily by eliminating an arbitrary constant from it, by

means of its differential equation, particularly when it con-

tains two variables, as x and y, and higher powers of

til/ (ZiJC

-# or -T- than the first power.
ax ay ^

Thus, by taking the differential of

Axy'£ + ix'-Af-B)%-xy = 0,

we have

;(.a..|+«.-a^-b)+(a*+i)(.|-,)=o,
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in which x is taken for the independent variable. From the

proposed equation we get

. .. B ^-"*)^- Kf-^ = xy ^ ,

which being substituted in the preceding differential, and re-

jecting the useless factor A -j-^ + 1, gives the differential

equation

xy^y + dy {xdy — ydx) = 0, or - d^y — dyd - = 0.

The first integral of this clearly is

dx y^

and the integral of this is

2/2 = Gx^ + C'.

From the substitution of the values of -^ and y' in the pro-

posed equation, after a shght redaction, we get

ACC + C = - BC, and thence C = - -~-^;
' AC + 1

consequently, from the substitution of this, we shall get

y -^^ - AC +1
for the integral of the proposed equation.

Eemakk.—For the substance of what has here been done,

we shall refer to p. 123, &c., of Monge's " Application de

I'Analyse a la Geometrie," and to Lacroix, p. 370, vol. ii.

(10.) The integral of a differential, or differential equation,

between x and y, may sometimes be found by assuming an

expression for the integral, or for the relation between x and
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y, in undetermined coefficients and exponents of x and y if

required, such, that by. putting the differential of the as-

sumed integral equal to that proposed, they may be made

identical, so as to determine the indices and coefficients.

Thus, to find the integral of the differential

adso + ixdx

ex + a^

(given by Vince at p. 184 of his " Fluxions "), it is evident

that it may be represented by the form

A log {ox'' + »' +
'),

of like form to the integral assumed by Vince, in which A
and r are to be found.

By taking the differential of the assumed integral, we have

. rex'' ~ ^dx + (/• + 1) x''dx

which must be made identical to the proposed differential

which serves to find the unknown A and r. If we put

r = s + 1, and multiply the numerator and denominator

of the proposed differential by xf, its denominator becomes

identical to that of the assumed differential; consequently,

we must have the identical equation

{ax' + 5a3' + '^)dx — [Areas' + A (r + 1) cb' + ^ dx,

or, rejecting the useless factor afdx, we shall have the

identical equation

a + hx = Aro + A{r + l)x,

which, by the .method of undetermined coefficients, gives

b r + 1

ro '

a = Aro and
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From the substitution of the values of r and A in the

assumed integral, and using log ^ to stand for the

arbitrary constant, we get

/
adx + hxilx _ho — a ex""-" + d"-"
cx + a? ~~ ~~c

^^

for the correct integral. Putting

C = ex'""-" + a;'*"-"",

in which x' represents some particular value of a;, then

6c 1 6c — a

/adx + hcdx ,

,6c — a _L ™6c — aCyfio-a _(. jg,

+ 2!"°-

which equals naught when x = a?', and agrees with Yince's

integral when it is properly corrected.

(11.) Sometimes the integral of a differential equation of

the higher orders, between x and y, may be simplified in

form by taking a function of the independent variable for a

new independent variable. Thus, if we take

-y4 + — -/ — BVy = 0,
da? X dx ^ '

and put « = £»"+'' = a;"",

we may evidently take u for the independent variable.

Because y is supposed to be a function of a?, which equals

a function of m, by taking the differentials of these equal

functions, we have

^JLdx = '^du or ^^^.1^.
dx du ^ dx du' dx^
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consequently, since u= x"" gives

-=- = mx"'~\
dx

we shall get -^ = m ^ x"'-\° dx du •

Again, since u is to be taken for tiie independent variable,

in 1

\dx/

we must, for -r^ in tbe proposed equation (see p. 36), write

d

its equivalent —^

—

—
; consequently, since

dx du

and that -^ is a function of x.
du

di'^A
\dx) , wx '^2/ ™_2

, <^V id^\

dx

^ ^ aw du-

Hence, from the substitutions of these values of

dy ^(1).

dx ' dx

in the proposed equation, after an obvious reduction, it will

b ^ (i
^-'^

]
^y ^V - Q.

du^ \ 71% ) udu rn\i
'

which, by putting 1 H • = o and —; = A, becomes

(iit^ udu u '
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•which is the sought transformation, and it is clearly of a

much simpler form than the proposed equation.

For another example we wiU take the equation

da? dx " '

and shall take u = e"^ for the independent variable.

From -^ = -^ -^m we have -^ = n -^ e"^,
dx du dx dx du

and thence -^ = »^^ ^, e=- + n^"^ e
dm

\dxl _, dJ'y .^ , dy

dx du^ du

consequently, from the substitutions of these values, the

proposed equation becomes

du^ \ n) udu r^ u '

which, by putting

A , B^ ,

In = e and —==. h,
n w

becomes -7^ + c ~ h- — 0,
du'' udu u

which is the same as the transformation in the preceding

example; consequently, the solution of one of the given

equations must be given by that of the other.

Eemaek.—The preceding equations are due to Professor

Peirce ; they appear to' have been first published at p. 399

of Professor Gill's "Mathematical Miscellany."

(12.) When a differential equation between x and y is

such, that its integral, in finite terms, can not easily be found,

then we express the dependent variable in a series of terms

of the independent variable, having undetermined exponents
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and coefficients ; and then, substituting the assumed series for

the dependent variable in the differential equation, we deter-

mine the exponents and coefficients, so that the indices of

the independent variable shall increase from left to right

for an ascending series, and stall decrease from left to right

for a descending series.

Thus, to integrate

^ + -^ - A ^ =
du^ udu u '

the transformation found in (11), it is easy to perceive that

we may assume

y = Au" + Bi*"^
+

1 + C-w" + = +, &c.,

which, being put for y and its differentials for those of cPy

and dy in the equation, gives

A \_a{a + o—V)]u''---'+ [B (a + 1) (a + c) — AA] ««-i

+

[C(a + 2) (a + + 1) - B/i] W" +
[D (a + 3) (a + c + 2) - CA] m" + ^ + &c. = 0,

which must"clearly be an identical equation, or be satisfied

independently of u. The first term of the equation is evi-

dently reduced to naught by putting

a = 0, or a ^- c — 1 = 0,

which gives a = 1 — c, and A is arbitrary. It is also

manifest that the remaining terms of the equation will be

reduced to naught by the equations

B =
'^^

G= ^^

D =

(a + l){a + ey {a + 2) {a + c + 1)'

(a + 3) (a + + 2)

'

and so on. If in these expressions we put a = 0, they will
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^ Ah „ Bh AA=
give B = Y—-, C

D

l.c' 1.2 (c + 1) 1.2c (o + l)'

Ah'

1.2.3c (c + l)(c + 2)'

and so on ; and in a similar way, by putting a =1— c,

and using A' for the correspondiiag value of A, the same

expressions will give

I)' =

1.(2 -c)' 1.2.(2 - c) (8 -c)'

A'A'

1.2.3.(2 — c)(3 - c)(4 - c)'

and so on ; which, by putting 2 — c = C, become

_, __ A h n' _ -^ "

D' =

l.c" 1 .2.c'(c' + l)'

A'h'

1.2.3.c'(c' + l)(c' + 2)'

&c., which represent the values of B, C, &c., that correspond

to A'.

Hence, according to principles heretofore given, from

the substitution of the preceding particular values in the

assumed value of y, we shall get the complete value of y
expressed by

y=^ P+ re + i.2.c(c+i) + i.2.3.c(c+i)(c+2) ^^""r

., ^_jf hu h^u^ Uv?
^ I^ "* r+ Fc' + 1.2.6V +1)

"^
1.2.3.c'(6''+l)(c'+ 2)

^-y

in which A and A' represent the two arbitrary constants,

which the complete integration of the proposed differential

equation requires.
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If in this integral we put the values of u, c, and A, that

correspond to the equations

•^ + ^ '^^^ _ BVw — and ^+A^-BV^v-0d^^xdx ^^y-^^ ^^^ d£'^^dx ^* y-"'

separately, it is clear, from what is shown in (11), that we

shall get their integrals. Hence, if in the first of these in-

tegrals we put A = 0, or =: 1 — — , it will be the integral

d^y
of the equation -=^ — '&x'^y —

;

and by putting A = 0, or c — 1, the second of the pre-

ceding integrals will be the integral of

^ _ B^e"^y = 0.

It naay be added, that if we put y = eJ""' {e being the

hyperbolic base), we shall have

^ = fe/"*^, and thence ^ = (dt + fdx) ef'^'
;

consequently, the equation

d^ ^'^y-^

is immediately reducible to

dt + fdx - BV = 0,

which agrees with the equation of Eiceati. (See Lacroix,

pp. 256 and 417, vol. ii. ; and Young, p. 202.)

From y = eJ"^''^ or its equivalent log y — I tdx, we get

t = —^ ; consequently, if with
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^ = A (l + i^ + &c.) + A'«--' (l +^ + &C-),

the integral of ^~ BVy =. 0,

cly
after a;"* + ^ has been put for m, &c., we proceed to get ——

,

it will give i in a function of x, which will be the integral

of Eiccati's equation; noticing, that although A and A'

enter the equation, yet its form is such, that they are only

equivalent to a single constant.

(13.) Sometimes it will be useful to determine the ex-

ponents of the series which represents the dependent varia-

ble, particularly when the series" is descending ; which will

readily enable us to determine the series.

Thus, to find the integral of

By assuming x = Ay" -f, &c.,

retaining only the first term, we have

-^ = nAy—i and _ = w (»i - 1) Ay"-=,

and thence the question reduces to

2aAy" — n (w — 1) ahy" + 2Ay" — 2w,^Ay + = 0,

in which the least indices of y are clearly n, while the greatest

indices of y are In. Putting the sum of the coefficients of

the least power of y = naught, we have 2 — ?z (»z — 1) = 0,

whose positive root gives n = 2, which enables us to find x

m a series of ascending powers of y. For 2 put for n in

the equation reduces it to

2aAf- - 2aAy- + 2Ay — 8Ay = ;
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consequently, subtracting the least indices of y from the

greatest, we have 2 for their difference, which clearly shows

that a; = Ay' + B/ + C/ +, &c.,

is the proper form for «, when expressed in ascending powers

of y. For a descending series, we put the sum of the co-

efScients of the highest powers of w, in the equation

2aAy" — w (re — 1) aAy" + 2Ay — 2n-'Ay" = 0,

equal to naught, and thence get 1 — «i' = 0, whose positive

square root is w = 1. Putting 1 for n in the equation, we

have 2aAy — n (w — 1) aky + 2Ay — 2?i'Ay = ;

consequently, subtracting the greatest from the least ex-

ponents, we have — 1 for their difference, which evidently

shows that » = A'y + B' + C'y "' + D'y-"' +, &c.,

is the proper form of x in descending powers of y. (See

p. 186, &c., of Yince's " Fluxions.")

Taking the first and second differential coefficients of the

form X — Ay' + By* +, &c.,

we have ^ = 2Ay + 4:By^ + 60/ +, &o.,

and ^^ = 2A + 12By2 + 300/ +, &c.

;

consequently, substituting the series for x, and these values

of the differential coefficients in the proposed equation,

after properly ordering the terms, we shall have

2aA/ + 2aB/ + 2aCy' + 2aDf + ^

- 2aA/ — 12aB/ — 30aC/ — 66aD/ —
- + 2Ay + 4AB/ + (2B^ + 4A0) / +
- 8Ay- 32AB/ - (32B= + (48A0)/ - .

which must clearly be an identical equation.

2i

Y = o,
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Hence, we must have

2aA — 2aA =0, or A is arbitrary

;

Q AS

2aB - 12aB + 2A= - SA" = 0, or B = -^

;

2aC — 30aC + 4AB — 32AB = 0, or C = 3A°

5a^

2a.D-56aD + (2B^+ 4AC) - (32B^+48AC) = 0,

or
45a''

'

and so on ; consequently, from tte substitution of these

values of A, B, C, &c., we shall have

'"=^^^- ^'^+ 1^2/'-^V +, &c.,

for X expressed in a series of ascending powers of y, in

which A is the arbitrary constant.

To find a; in a series of descending powers of y, we have

a; = A'y + B' + C'y"' + DV +. &c-,

whose differential coefficients are

dx

dy'

, cPx

consequently, from the substitution of these values in the

proposed equation, we have

2aA'y + 2aB' + 2aC'y-^ + &c.
'

— 2aG'y-'^— &c.

2A'y + iA'B'y + 2B'= + 4B'CV-' + &c. - =-0,

- 2A'y + 4A'0' + 4A'DV-^ + &c.

+ 4A'C' + SA'D'y-i + &c.

,

A' - G'y-' - 2B'y-' -,&c.,

= 2C'y-' + 6D'y-'+,&c;
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which must be an identical equation. Hence

2A'^ — 2A'^ = 0, or A' is arbitrary

;

2aA' + 4A'B' = 0, or B' = -^;

2aB' + 2B'^ + 8A'G' = 0, or 0' =

4B'C' + 12A'D' = 0, or D'

=

16A'

96A/2)

and so on ; consequently, from the substitution of these

values of A', B', C, &c., we shall have

for the value of «, when expressed in a series of descending

powers of y, in which A' is the arbitrary constant.

Because the proposed equation is of the second order of

differentials, its complete integral must involve two arbi-

trary constants ; consequently, from the addition of the two

particular values of a?, we get the complete value of

"' = ^2/^- '^-^ + ^r/ - &c. + A'y - 1 + j^+, &c.,

as required.

Eemakks.—1. If, with Mr. Young, at p. 260 of his "In-

tegral Calculus," we integrate the equation \\ -\- -j-S y ^ \

by the preceding methods, we shall get

y = J+ 4/2 (a; - a)^ -
I

(a! - a) + ^ (a; - a)* -. &c.,

in which 5 is the value of y that corresponds to a; = a, which

is clearly equivalent to the determination of the arbitrary

constant
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2. This question can clearly be integrated without using

series, by regarding x as being a function oi 'y. For the

equation can be reduced to

dy ^ dx y ^ . 1 -, — ^

dx~ ^' dy~ \-y~ ^^ 1-y- " 1-y'

which gives dx = — dy ^ -^ ;

and thence

a; = — y - log (1 — y) = — y + log 1-y'

which needs no correction, supposing y and x to commence

together.

(14.) To what has been done, it may be added, that differ-

ential equations, of the first order in particular, may often

be elegantly integrated in a continued fraction.

Thus, by taking the differential equation

P+Qy + Ey' + S| =

(See Lacroix, vol. ii, p. 427), and putting

2/=-^, and Aa^=X, P'=P+ QX+EX=+ S ^,^ 1 + y dx
dK

Q' = 2P + QX+S^, R' = P, S'=-SX,

we shall have the transformed equation

P' + Q'y' + B.'y" + S' ^' = 0.

If in this equation we put y' = yj , and in the pre-

dv'
ceding results change P', Q', E', S', and

-f- ,
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into P", Q", E", S", -^ , we shall, ia like manner, get

P" + Q'V" + E'y" + S"^ =

for the transformation of the preceding transformed equation,

and so on, to any required extent.

To make what has been said more evident, take the par-

ticular example

my + (1 + £») J = 0.

Then y = ———;
, supposing A*" and y' very small,

may approximately be reduced to y — Ax", which gives

I = ^^^'-

'

and thence the proposed equation is approximately reduced to

(mA + aA) x" + Aaaf-^ = 0,

which is approximately satisfied by putting a = 0, and

omitting mA on account of its supposed minuteness ; con-

sequently, we may put y = =
7

, and shall thence get

^A
dy _ dx

dx~ ~
(1 + yj

Hence, from the substitutions of these values of y and

^ , the proposed equation becomes

which is easily reduced to

— m — my' + (1 + «) -^ = 0.
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dy'
By changing, as before, y" into Ba;*, and ~ into JBaJ*-*,

this equation becomes

— m — mBa^ + JBaj' + JBa;'-* = ;

which is clearly satisfied, as required, by putting 5 = 1, and

making B = m, when terms of the order m? are omitted
;

consequently, jj is reduced to z -, ; noticing, that

we have hence reduced y to

y 1 + y'
1 ,

Ba;" mx

If for y' in the equation

_m-my' +{\ + x)^= 0,

we put its equal, after a slight reduction, we shall get the

equation

(m - 1) K + [1 + (m - 1) £»] y" + y"'+ {l+x)x -j~ = 0.

dv" .

Putting Gaf and cGaf ~ ^ for y" and -^ in this, we get

(m— l)x+[l + {m — !)»] Ca;° + C'ic'"' + cG{l + x)x^ = Q;

which, by putting c= 1, omitting the common factor x, and

retaining only the principal terms, reduces to

m — 1 + 20 = 0, and gives C = -ir~.i

,, Gaf , TO — 1
consequently, :r—-—777 becomes

1 + y'" 2_
l + y"



Proceeding
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or, taking the reciprocals of these equals, we have

(1 + a))™ = 1 +
mx
m — 1 X

1 "2

- TO + 1 X

3 '2

^ TO — 2- a?

"3~-2

- TO + 2 a;

5 '2

. «i — 3 a;

5 "2

1 +,&c.

;

consequently, the binomial theorem may be' considered as

being reduced to the form of a continued fraction.

Since the exponential theorem (b), at page 51, reduces

(1 + xY to

1,1/-. N TO^ rios; (l+a!)P „

1 + TO log (1 + a;) + — 12 ^' '

we hence get

mx
1 + TO log (1 + a;) + &c. = 1 +

^ m — la?
^ ^"2

l+,&e.

or, from an obvious reduction, we have

log (1 + a;) + &c. = -

. TO — 1 a;

1 '2

1 +, &c.,
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•wliicL, by putting m = 0, reduces to

log {l+x)= "^

^1 2

1 + i^^3 2

^3 2

^5 2

^5 2

l+,&c.;

consequently, tte hyperbolic logarithm of 1 + a; is reduced

to a continued fraction.

(X X"^
1 H j , when w. is infinite, equals

1 + ^^ + + ry:3 + '^°- = ^*

[see (&') at p. 61], it clearly follows that if in

(1 + a?)" = 1 +
- m — 1 X

_1 ^2

1 +, &c.,

we put — for X, and suppose m infinite, we shall get

24*
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X
e'=l +

, 1 X
1-2

1 X
1 + 3-2

- 1 X
3'2

1 X
1 + 5-2

^ la;
5-2

1 +, &c.,

for tbe conversion of e' into a continued fraction.

For another example, we will find the integral of

1 — (1 + a;") -^ , or its equivalent dy = j—— .

By taking the integral of

dy = = ( 1 — I dx,
^ 1 + as" V 1 + af"/ '

, r dx C (""dx
we have v = / ::

— — x — I
,^ J 1 + af J 1 + x"'

which needs no correction, supposing x and y to commence

together; and to find y in a continued fraction, we may

clearly put y = ---—-, which gives

«_ _ _ _ r afdx 1 _ 1 /* x'dx

l + y'~^~ J iV^' ""^ TTy' ~ xJ T^s^'

whose reciprocal gives

"

'

\ xJl + af/

+ aj^l + a^-V xJ l + af^y
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, 1 C afdx /. 1 /• a!"(fa; \

°^ y=xJTv^-^v-xJTv^)

" U + 1
~ S y 1 + iB"/

~
\ ~ 5 y l + asV

'

consequently, by putting tr—-—^ = y', we tbence get

A _ / a;" 1 /• g^"cfa \ ^ /^ _ 1 /* g!"cfe \

1 + y" ~W + 1 a!yH-cB"/"\ xJl + a;"/'

a)"
and thence A = —-^ is the numerator of the second of

M + 1

the continued fractions, and

1 + y" ~ V a!"
+

1 y 1 + iK"/ \ xJl + xV'

or, taking its reciprocal, we have

14- " _ /i _ 1 Cj£^\ ^ /i _ ^^ + ^ /*.^"^^\
^"^ ~r a!./l + a!"/ • I x"*'Jl + x"l

— 1 /"'+ ! f <»^"dx _1 rx"dx\
, / n+ 1 faf''dx\

or, after a slight reduction,

„ _ /{n+^x" _ «" _ ^1+^1 r ^dx 1 /• a!^''<7a; \

^ ""
V 2w+ 1 n+1 ~ »«+"i"y 1+ K" "^ «y iT^j

/ n-\-l r a?"dx \

— / ""i"" 1 rx-"dx _ nH^l /* a;S"&j\

~
!(« + 1)(2«' +3) "^ »•/ l + x" l^^J 1+af)

/ n + 1 r x-^dx \

Putting y" = ——777 , we shall easily get
y

B
('/I + 1) {2n + 1)
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for the numerator of the third of the continued fractions

;

and then taking the reciprocal, we shall have

^^
\ a!" + i J 1 + x")

' \ n^x"*^ J l + x" «,V" + i J 1 + af)'

and so on, to any required extent. Hence, we shall have

/dx X

1 + x^
1 +
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(15.) We will now proceed to show how to find the inte-

gi'als of what are called Simultaneous ^nations, such as

and Wy + N'a) + P'^ + Q' J = T',

in which M, N, P, &c., are supposed to be functions of t,

considered as being the independent variable ; the equa-

tions being coexistent and of analogous forms.

1. To integrate this kind of equations, after multiplying

by the diflferential of the independent variable dt, they may
be written in the forms

(My + Na;) dt + Ydy + Q,dx = Tdt,

and {Wy + Wx) dt + F'dy + Q'dx - Tdt

;

and multiplying the second of these by 0, regarded as being

a function of t, and adding the product to the first, we get

the single equation

[(M + M'd) 2/ + (K + we) X-] dt +
(P + P'e) dy + {Q. + Q'O) dx = {T + TO) dt.

Putting

M + M'6l = Mi, ]Sr + N'(? = Ni, P + P'0 = Pi,

Q + Q'd ^ Qi, T + T'e = Ti,

we thence have

(Mi3/ + Nioj) dt + F^dy + Q^dx = T^dt,

a form analogous to the proposed equations, and it is clear

that this equation is equivalent to

Ml [y + 2| a;) dt + F, (dy + ^dx)= T,dt.
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Putting
J,
+ _i

a; = s

and assuming d ly + ^x\ = dy +^ckB,

the preceding equation is reduced to the form

Uisdi + Fids = Tidt, or dz + ^ sdt = -^ dt,

which (see p. 455) is a linear equation. From

^ (y + jj «) = dy + Y '^^^

by taking the indicated differentials, we have

Ml Ml Pi '

which must be an identical equation ; consequently,

^ = §i and ^^-'=0,
Ml Pi Ml '

S + we _ Q + Q^9 , , N + N'e _ ,
°'' MTM^ - P + F0 ^""^

"* M + M'0 - "'

and by perfoi-ming the indicated differentiation of the second

of these equations, and eliminating from the result and tbe

preceding equation, we shall get the relation between the coef-

ficients of the proposed equations that must exist, in order

that their integrationmay be reduced to the integration of the

preceding linear differential equation of the first order. It

may be noticed in this place that, if we integrate the equation

N + WO ]sr + we
d =k?

—

Trra = 0, we shall have =rf—=772 = C = a constant,M + WO ' M + M.9
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N_+Wo__ Q±Qfo
U + M'd~ F + F'd

consequently, eliminating 6 from these equations, we have

._ N-CM . -_ Q-CP
" - CM' - N'

^^"^
CP' + Q"

, . , . N-CM Q - CP
which give CM'-N' = CF^^Q'

'

or,"reducing this to a common denominator, &c., we have

NP' - PN + MQ' - M'Q _ NQ'-QN'
+ PM' - MF"" PM' - MP'

•

Hence, having found C from the solution of this quadratic,

and taken the differential of its value on the supposition of

the constancy of C, we shall clearly get the same result as

from the preceding method.

Solving the linear equation will clearly give s in terms of

W
t ; and thence from y + ^, x — s, we can find y in terms

of X and t, which, being substituted in either of the proposed

equations, will give a differential equation in x and t, whose

integral gives x in t, and thence having found x and y in

terms of t, by eliminating t we shall get y in terms of x, as

required.

2. If the coefficients M, N, P, &c., in the first members of

the proposed equations, are all constant, it is clear that

, N + NO -

M + M'

is satisfied by supposing that is constant ; and thence, from

the solution of the equation
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N + N'e Q + Q'e

Z

M + M'0 ~ P + P'e'

we shall get, by the solution of a quadratic equation, two

constant values, 0'and0", of ; consequently, if m and n are

the coefficients of the linear equation that correspond to 5',

and m! and n! are those that correspond to 6", the linear

equation gives the two linear equations

dz + msdt = ndt and dz + m'zdt = n'dt.

Integrating these equations by the formula at p. 455, we

shall have

= e-f'-^'lfnef'-^'di\ and B = e-f^'^'ifn'e/^^'di\

for the sought integrals ; noticing, that the arbitrary cohstants

are supposed to be comprehended by the integral signs

/ «,, &c., / n', &c. By substituting the values oi y + yr,<i>

that correspond to those different values of z, for z in the

preceding integrals, we shall have two equations in x, y, and

t, which will clearly give a; and y in terms of t ; consequently,

from the elimination of t, we shall get y in terms of x.

3. For another example, we will integrate the simultaneous

equations

dy + (My + Na; + Ps) dt = Idt,

dx + (M'y -t- Wx + P's) dt-^ T'dt,

dz + {Wy + Wx + V'z) dt = T'dt;

which may be supposed to be obtained from three equations

of forms analogous to those of the preceding example, by

eliminating -j- and 57 from the first by means of the

second and third equations, and so on for the remaining

equations.
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Supposing T, T', T", to be functions of t, while the other

coef&cients in the preceding equations are constant; then,

multiplying the second and third equations by the constants

C and C, and adding the products and the first together, we

shall have a single equation of the form

4y + Cdx + G'dz + Q (y + Ea? + Ss) dt = JJdt.

If in this we change and C into E and S, it will become

dy + l&dx + Sdz + Q(]/ + 'Rx + Ss) dt = JJdt
;

consequently, putting y + 'Rx + Sz = v,

since E and S are constants, the equation will become

dv + Qvdt — Udt,

a linear equation, whose integral gives v, or its equal

2/ + Ea? + Ss,

equal to a function of t.

4. The preceding process is applicable to differential

equations of the higher orders, which may clearly be re-

duced to those of the first order.

Thus, the equations

d'y + {My + Na;) di" + {Fdy + Qdx) dt = Tdf

and d'x + {Wy + Wx) dt^ +{P'dy + Q'dx) dt = T'dt%

by putting dy = pdt and dx = qdt,

are reduced to the equations

dy —pdt, dx — qdt,

dp + (My + Naj + P^ + Q^) dt = "I^dt,

and dq + {M'y + Wx + 'P'p + Q'^) dt = T'dt,

to which the preceding method can evidently be applied.

(See Young, p. 264, &c. ; and Lacroix, p. 337, &c.)
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By reducing the first two of the preceding equations to

dy — pdt = 0, dx — qdt = 0,

and multiplying the second, third, and fourth by the con-

stants C, C, C", and adding the products, we have the

single equation

dy + Qdx + G'dp + Q"dq +Q (y+ Eaj + S^ +Yq) dt ^JJdt.

Putting

dy + Gx + G'p + G"q =: d {y +B,x + Sp + Yq),

and C = E, C = S, C" = V

;

then, since these values are constant, our equation is reduced

to the linear form dv + Qvdt = IJdt,

in which v is put for

y + B,x + Sp + Yq,

and thence, oy taldng the integral, this becomes a function

of t For a simpler method of integrating simultaneous

equations of the second order, under certain restrictions, we

shall refer to p. 130 of Whewell's " Dynamics," or to any

other work that treats of the very small vibratipns of what

ai'C called Complex Pendulums.



SECTION IX.

INTEGBATION OF DIFFERENTIAL EQUATIONS CONTAINING

THREE VARIABLES.

(1.) If we have Vdx + Q,dy + "Bids = 0,

such, that X and y are considered as independent variables,

P Q
and z a function of them^ then, if^ = — =g- and q=: — :^,

the equation will be reduced to the form dz = pdx + qdy.

If this is the total differential of 3, regarded as being a

function of x and y, it is evident that we shall have

dz , dz
P = Tx

^•^'^
^ = ^'

and because dz is supposed to be an exact differential, its

equivalent pdx + qdy must also be an exact differential

;

consequently, Euler's condition of integrability (see pp. 439

and 440) must exist, which gives the differential coefficient

ofp taken relatively to y equal to the differential coefficient

of q taken relatively to a?, and thence, since p and q may
contain z, we shall get

dp^dpdz^^dq^dgdz
^^ ^_,.„^^^^jp^

dy dz dy dx dz dx dy " dz dx -^ dz^

or, by transposition, we have

dy dx ^ dz -^ dz

for the condition of integrability of dz ^=pdx + qdy.
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To determine the proper form of m, we may omit any

one of the terms of the equation, as the last, then we find

m such that mFdx + rnQdy =
shall be an exact differential, on the supposition of the con-

stancy of 3 ; and putting

du = mPdx + mQ^dy,

by taking the integral, we have

u — J {mYdx + mQdy) + (s) =.V + ^ (s)

;

in which </> (s) = a function of z, is used for the arbitrary

constant, since, in the integration, s has been considered as

a constant.

To find (p (s), we differentiate the members of the equa-

tion u = Y + 4> {s),

relatively to s only, and thence get

du dV d<t> (s)
_

dz ~ dz dz ''

consequently, since u is here supposed to be the integral of

mPdx + mQ,dy + mRdz = 0, -v- = mE,

and thence

dV d(t>(3) d(t>(z) _ dV
dz dz dz dz

which gives (j) (z) = I (mE — -^j dz,

and thence the integral becomes known.

Because f (z) is independent of either x or y, it is clear

that when the factor ??i is correctly found, it must be inde-

pendent of either x or y.
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Thus, to integrate ysdx — xsdy + yxds p 0.

We have P = ys, Q = — as, and R = yx,

and thence the equation of condition becomes

ysx — yx2 — yxz H- xzy — xzy + yzx = 0,

and the condition being satisfied, the proposed equation

must be integrable.

To find the integral, we omit the last term, and thence get

s iydx — xdy) = 0,

which becomes an exact integral, by multiplying it by the

1 Z3j

factor wi = —2 , the integral being m = h ^ (s)
i

y if

, du z dd)(z\
consequently, -y- = —h - '

or, since

dz y dz

du _yx _x
^~ y" ~ y'

X X di){z)
we shall get - = — r—

,

^
y y dz '

which gives d^ {z) = and ^ (s) = const = 0,

and thence « = \- Q is the sought integral.

For another example, we may take the equation

zydx + xzdy + ayydz + az'ds = 0,

which will be found to satisfy the condition of integrability

;

consequently, its integral can be found. Indeed, since the

integral of the first three terms of the equation is xyz,

and that -^ is the integral of the fourth term, it is clear
o
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that the integral of the equation is

in whicli C represents the arbitrary constant.

(2.) If the equation Fdx + Qdy + B,ds =
does not satisfy the condition of integrability, then it is clear

that one of the variables can not be regarded as being a

function of the other two, so that the variables can not rep-

resent a surface
;
yet, as shown by Monge, they may repre-

sent a pair of integrals which depend on an arbitrary func-

tion of s considered as being the dependent variable.

For, as shown at p. 513, &c., by regarding the dependent

variable s as beina; constant, the resulting equation

Tdx + Qdy = 0,

admits of an integral. Hence, multiplying

Fdx + Qdy + E& =
by m, as before, so as to make (Pdx + Qdy) m = an exact

differential, we shall have

TPmdx + Qmdy + B-mdz = 0.

Putting du = Pmdx + Qmdy,

we shall, as before, get ,

u = fiPmdx + Qmdy) = V -^ ^ (s) =

for one of the integrals ; and taking the differential coefficient

of this relative to s, we get -^—| ~
, which, being put

equal to E??i, the coefScient of ds, in the equation

Tmdx + Qmdy + 'Rrnds,

dY d'Pis) „
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for the otter equation ; consequently

V+M.) = and 'g+^^) = Rm,

in whicli
<t>

(s) is an arbitrary function of s, wliicli satisfy the

equation Tmdx + Qpndy + B.mdz = 0.

Thus, of ydy + zdx — ds = 0,

regarding s as invariable, the multiplier m is 2, and thus the

equation to be integrated becomes

2ydy + 22dx — 2d2 = 0;

the integral of its first two terms, regarding z as const., is

f + 2zx + (t>{3) = 0,

and thence ^- H -^ — B.m
dz dz

becomes 2x +^ = -2, or 2«> + ^-^ + 2 = 0,
dz ^ dz

which, by putting <^ {£) = z^, is immediately reduced to

a? + s + 1 = 0, the equation of a right line.

In much the same way

2xzdx + 2yzdy + it^dz =
can be satisfied by

{a? + y^z + <l>{z) = and a^ + j/^
+ '^) = a,=,

y + -i- = *^-

For another example, we will take the equation

xdx + ydy dz

X {x — a) + y {y — h) z
0.
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This equation can be immediately satisfied by putting

X {x — a) + y {y — h) = ^{s) = & function of s,

which reduces the proposed equation to

2xcb! + lydy - ^^^^'dz,

whose integral is x^ + y^ = 2 I —^-^ dz.

It is easy to perceive that, by putting (s) = — (s — c) s,

the integral becomes

a? + f = — s^ + E\ or af + y^ + s^ — BP,

the equation of a spheric surface, in which E^ is used for

the constant.

It may be added, that, if we put y =^ x, the differential is

immediately reduced to = zr = , whose
•'

z — G 2x — a —
integral is clearly s — r? = C (2a! — a — 5).

(3.) It may be observed that the differentials and their

integrals here considered being of algebraic forms, their in-

tegrals are sometimes called algebraic integrals.

Algebraic integrals of differential equations can some-

times be obtained from the simplest principles.

Thus, to find the algebraic integral of

dx Vl+a? + dy Vl+f= 0,

or of its equivalent

dx{l + X) '/^3^.+ dy (1 + y)/^.^ = 0,

we may proceed as follows.

2i
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By assuming

a?—x+ 1 V or le'— {l + v)x+l — v=0,
X + 1

and using x and y to represent its roots, we stall, from the

well-known theory of equations, get

X + y = 1 + V and xy^l — v,

whose sum gives x + y + an/ ^ 2

for an algebraic integral of the equation. Because x and y

are roots of - aP — {l + v)x + l — v^=0,

it is clear that we shall have

./or' -x+~l Jf - y + 1

consequently, by erasing this common factor from the second

form of the proposed equation, we shall get the differential

equation (1 + cc) <fe + (1 + y) cZy = 0,

whose integral is

a^ _L ^2
aj + y H „-— = C = the arbitrary constant

From the algebraic equation we have a? + y = 2 — ajy,

which, substituted in

ar" + V^ „
a' + y + -^Y^ = C,

2-xy + ^^=G, or t^ =. C - 2,

reduces it to

2 — osy

or, more simply.

{x — yf = C = constant,

an integral that is evidently of an algebraic form.
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Eemaek.—^If we proceed in like manner to integrate

dx dy .

we shall get a)° — (1 + ;;) a? + 1 — « = 0,

and ttence as + y + ajy =: 2

for the algebraic integral, the same as before. Hence, from

"^iB^-aj + l ^ y" -y -^V
the proposed differential equation reduces to-

iTjT^ + Y^- = 0, or to (1 +y)dx + (l + X) dy = 0,

whose integral is

a! + y + a;y=C = the- arbitrary constant,

which, by putting 2 for C, becomes x + y + xy = 2, which

is the same as the preceding algebraic integral.

For another example, we will show how to find the

algebraic integrals of

dx Vl + a? + dy Vl + if + dz Vl + ^ — 0.

Because

dxVl + sc^ = dx {a? + x) y-^—^

by putting

{x + ^f

= dx {X^ + X) ^'^^^-1 , &c.,

a? + a?

we have c^ + (I ~ v) x^ + vx — v — 0;

and supposing x, y, and s, to be its roots, we shall have

ai + y + s = v — l, xy + xs + ys = V, and xys = v
;
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consequently, eliminating v from these equations, we shall

have

xy •{- X3 -\- yz — {x + y -{- z) =^ 1 and xy + X3 + yz — xyz,

which clearly correspond to two of the algebraic equations.

To get the other algebraic equation, we reject the factor

S + 1 1

a;' + ar" ' f + f s? + z"^ ^v'

which is common to all the terms of the proposed equation,

and thence get the differential equation

-{a? + x)dx + (y' + y) dy + (s° + z)dz = 0;

and by taking the integral of this, we have

^ a? 1^ tp s' ^
3 + 2 + 3+2+3+2"^ "°^'*^"*'

or 2 (£»= + y' + 2-') + 3 (s!^ + 2/' + 2") = 0,

which is clearly an algebraic equation, as required.

For the last example of this' method of finding algebraic

integrals, we will take

dx \'l + 33* + (£i/ VT'+ / ^ 0.

By putting as' = x' and y"^ = y', we shall change the

equation to

1 , , ,/l + x'' 1 , , ./I + y'^^dxY-^^ + _ay'V-f~.
Putting

1 + x'' 1 +y'^ „ , . „7— =
, = V, we get x'^ — vx' + l = 0,

whose roots being x' and y', we have

3!'+/ = •2^, or a^+y^—v, and xy = 1, or s^y^ = l.

Eejecting the factor ^ from the proposed equation, we get
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dx' + dy' = 0,

wliose integral gives »' + y' = a?^ + y" = C

;

and thence a^y^ =1, ic^ + y^ = 0,

are algebraic integrals of the proposed equation.

For fuller information on algebraic integrals, see pages

383^04: of Professor Gill's "Mathematical Miscellany,"

published at Flushing, L. I., during 1836, 1837, &c. ; and

for other methods of finding algebraic integrals, together

with their applications to elliptic functions, see the " Bxer-

cices de Calcul Integral," of Legendre, and p. 471, &c., of

Lacroix.

(4.) Eesuming dz ^ -j- dx + -j- dy — pdx + qdy^

in which s is a function of x and y^ considered as being in-

dependent variables, so that dx and dy (see p. 34) must be

constant in differentiating the equation ; consequently, by

taking the differential of the equation, we shall have

c^^^ = g^*= + 2 ^^ dxdy_+ ^,^/;

^z d^z d?z cPs , , ^
or, representing ^, , ^^ = ^- , ;^. - by r, ., and t,

it becomes d?s = rdo? + ssdxdy + tdy^;

J „ dz J <^^
and Irom — = p and -=- = y

, , ^ ds cPz , d^z .,

we also have a -y- = ^-5 afa? + -5—=- oaj
dx dx' dxdy ^

, -. dz dh , d^z -

and d -— =
, ,

aa; + -7-5 dy,
dy dydx dy ^

or their equivalents

dp = rdx + sdy and dq = sdx + tdy.
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If we differentiate the equation

(a, _ «)= + (y _ if + {s- cf = R^

successively, according to the preceding principles, we shall

get {x — a) dx + (1/ — I) dy + (s — c) dz = 0,

dsr + df + dz^ + {z — c) cPs = 0,

and Sds^z + {s — c) d^z = 0,

for its first, second, and third differentials ; and so on, to

any required extent.

It is evident that the preceding forms will be very useful

in finding, by reverse processes, the second, third, &c., inte-

grals of differential equations between x, y, and z, when s

is a function of x and y regarded as being independent

variables.



SECTION X.

PARTIAL DIFFERENTIAL EQUATIONS.

(1.) Integration of partial differential equations of the

first order between x, y, and s, z being considered as being

a fanction of x and y, regarded as being independent

variables.

A partial differential, equation between x, y, and s, is said

to be of the first order, wben it involves -=- or -j- , or both
ct'X ciy

of these differential coef&cients, together with constants and

one or more of the variables, according to the nature of the

case. It is hence clear that a partig,l differential coefficient

can not exist between only two variables, as x and y ; since

if one of them, as y, is a function of the other, the coefficient

-— must evidently be complete or total, and not partial or

incomplete.

(2.) The simplest partial differential coefficient that can

exist between 2, and aj, y, must evidently be of the form

dz— z= a, obtained by regarding y as constant in the differen-

tiation ; consequently, reversing the process, in the integra-

tion, we multiply by dx, and thence get dz — adx, whose

integral gives z = ax + 4>y^J using an arbitrary function

of y to complete the integral ; since y was regarded as con-

stant in obtaining the proposed differential coefficient.
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dz
In like manner, from t- = Y , a function of y, we get

dz
s = Yx + (j>y; and from -j- = X = a function of x, we

have 3 = / 'K.dx + <py.

EXAMPLES.

dz
1. The integi'al of -j- =z oe^ + yx + a is required.

Multiplying by dx and integrating, since y and » are in-

dependent, variables, clearly gives

z = -^ + y-^ + ax + ^y.
_oi? . a?

2. To integrate

dz _ 2x J <^3 _ y
dx~ y^ + a? dy,~ \/{a? + y^)'

The answers are

z — log (y^ + aF) + (jiy and z = i^a!^ + y^ + <!>!».

3. To integrate

dz 1 , & 1
and

dx Y(y^ — a?) dy y{x^ + f)'

The answers are

z = sin~'—h 0y and z = log \_\/{x^ + y^ + y] + ^^\

4. The integrals of

— =y(a3, y) and -5- = ± -5- = a function of a; and ^

are required.
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The answers are

z — J f^i y)dx + ^ and s = ± J -^dx + (py.

(3.) We now propose to show how to integrate the equation

"(S)+''(S)=».
on the supposition that M and N are functions of a? and y.

From the equation we readily get

C?3

dy

M /^\
N Kdxh

dz
which, being substituted for -=- in

, dz . dz ,
ds — -y- dx + ~r ay,

dm dy '''

that results from the consideration that s is a function of the

independent variables x and y, gives

'^^ - dx r* ~^''y)-di N •

From what is shown at p. 513, since '^dx — Mdy is a dif-

ferential between x and y, it clearly admits of a factor I,

which makes it an exact differential, denoted by du ; or, more

generally, =^^ , being a differential between X and

y, admits of a factor m, which makes it an exact differential,

denoted by dv ; consequently, we shall have

I {Ndx — M-dy) = du, or m I ^ ^j = dv.

Hence, eliminating

-., , ,,7 '^dx — Mdy
Ndx — Mdy, or =^^-

—

-,

25*
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from the value of ds, it will be reduced to

as := -i^ -7- du, or to ds = j- do.
IN ax m dx

dz
Hence, since -^ is arbitrary, we may clearly suppose it to be

so taken that ds = =r=. ^- c?m
* IN dx

may be exactly integrable, and of course

^^ir;- -7- = Fm = a function of u,
IN dx '

and thence s = ipu; and, in like manner, from

dz := — -^ dvm dx

we shall get z = ipv, a function of v, which must clearly be

the same as the preceding function.

TKus, to integrate

by compaiing it to the general formula we get

M = — y and N — x,

and thence

I (Ndx — M.dy) = du becomes I (xdx + ydy) = du,

which gives Z = 2 and u = x^ + y°

!

consequently, 3 = (fi (x^ -{- y^).

Similarly, from m (- =j= ^j = dv,

we get m l^-^ ^-^
j — dv,

which gives m = 2x for the sought factor, and thence

v = a? + y'-;
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consequently, we thus get s = -ip {a? + ^), which is essen-

tially the same as the preceding result ; and from what is

shown at p. 215, s = cp (x^ + if) becomes the general equa-

tion of surfaces of revolution, when the axis of revolution

coincides with the axis of z.

For another example, we will take the equation

dz ^^ _ n
dx dy

Comparing this to the general equation, we get

M = 33 and N = y,
which reduce

I (Ndx «- Mdy) = du to I (i/dx — xdy) = du
;

and putting I ^ —
, the integral becomes

/
'ydx — xdy x

and thence g = ^ -

;

also

C^dx — M.dy\ , jydx — xdy\m I =^^ -I becomes m y- ^1 = dv,

1 X
which, by putting j/i = -

,
gives - = •«,

and thence a = ^ - , the same as before. (See Young's "Dif-

ferential Calculus," p. 199, &c.)

(4.) We will now show how to integrate equations of the

f"» ^(l) + «(|) + « = ».

on the supposition that the variables P, Q, E, are functions
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of X, y, s. Dividing the equation by one of the yariables,

as by P, and representing the quotients p and p by M and

N, it becomes -^ + M-t- + N" = 0,' ax ay

or its equivalent p + Mq + N" = ;

T dz. , dz ,
and from dz = -r- ax + -j- ay

•we also have dz = pdx + qdy
;

consequently, eliminating^, we shall get

dz + '^dx — q {dy — Mcfo;),

in which q, being clearly arbitrary, we must put

dz + 'Sdx — and dy — Mdx = 0.

If M does not contain z, the equation dy — M.dx =
admits of a factor m, which makes m {dy — Mdx) = an

exact differential, whose integral gives

P (a;, y) = C = constant.

Hence, if N" does not contain z, by eliminating y from

F (x, y) — C, we shall get y in a form that may be ex-

pressed by y =f {x, g), which, substituted in dz + l^dx = 0,

will give an integral of the form z— — I Ydx, V being a

function of x and c ; consequently, the indicated integral

can be found, whose constant ought clearly, for generahty,

to be an arbitrary function of the constant C.

Thus, to find the integral of

by comparing it with the proposed form, we have

M = ^ and N^-al'-^+i^.
X
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Hence the equations

dz + ISdx = and dy — HLdx =
will become

dz — adx—~—— = and dy—-dx — Oor—-—^— — ;

X ^ X • X

and it is clear that the factor - reduces the second of these
X

xdy — ydx -, y ^
equations to —-—;-^— = c? - = 0,^

x' X '

whose integral gives - = or y = Cx.

Consequently, from the value of y in the first of these

equations, we shall get

'

ds — adx^(l + (y),

whose integral may clearly be expressed by

s — ax |/(1 +, 0=) + (pG,

(j>C being an arbitrary function of C.

Because C = -, frgm the substitution of this* value, we

thence have z — a Vx^ + y^ + <t>- ^

for the equation between x, y, and z. Eesuming the equa-

tion dz + ~Sdx = q {dy — M.dx),

on the supposition that the first member does not contain y,

and that dy — M-dx does not contain i, then, if we have the

factors m' and m, which we may have, such that

m' (ds + 'Ndx) = du and m {dy — Mdx) = dY

shall be exact difierentials, they will give
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dz + Niias — —. and dy— M-dx — —

,

•whici. will reduce tlie preceding equation to

du =^ a — dV :

* m
consequently, since tlie first member of tHis equation is an

exact differential, the second member must also be an exact

differential, which it may be (on account of the arbitrariness

of q) by putting q — equal to a function of V, and thence,
'ffh

by taking the integral, we shall have u = ^V, or u must be

an arbitrary function of V.

Thus, if we take the equation

dz X dz ^ _ rt

dx y dy x ~ '

we shall have M = - and N" = ,

y X

and thence the equation

dz + 'Ndx = q (dy — M.dx)

will becom.e

: Idv —

and thence m' — - and m=^2y give
OS

z , / , £B , \ iindz — zdx (ydy — xdx\
dz--dx = q[dy--dx) or ~ = ^-^y )'

/ = ~ = u and f^ydy — 2xdx= y^ ~x^;

z
consequently, we shall- have - = ^ (y" — a?') for the sought

integral.

It may be added, that if we eliminate q from the equations

p + M^' + N" = and dz =pdx + qdy,
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we shall have Mrfs -f !N"c?y =^ {KcLx — dy)
;

or, since^ is arbitrary, as before, we shall get the equations

M.dz + Nriy — and dy — Mc?a; = 0,

and it is clear that we may proceed with these equations in

much the same way as before.

"Where it may be noticed that we may use the first of

these equations Mds + ^dy = instead of dz + 'Ndx =
(the first of those before found), since the second equations

are identical. If we take the equation

ds X dz xy ^ ., . ,. x , ,, xy
-j — + -^ = 0, it gives M = and N = -^,
ax a dy as ° a az'

and these reduce the above equations to

2ydy — ^sdz — and 2ady + 2xdx — 0,

whose integrals are y^ — s' and 2ay + aP ; and thence from

11 = (^V, by putting y^ —'z' for u, and 2ay + o? for V, we

shall haye j/^ — s' = <^ (2ay + x\ (See p. 50 of vol. ii. of

Wright's "Commentary on Newton's Principia.")

(5.) We will here venture some remarks on the integra-

tion of the partial differential equations of the second order

between a;, y, and s, when z is considered as a function of x

and y.

1. A partial differential' of the second order must involve

oiie of the coefficients

d?z d?z d?z d?z

d^'' dy'^ dxdy dydx^

at the least; and may contain other terms like those that

are contained- in partial differential equations of the first

order.
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2. The method of integrating equations of this order is, in

some respects, quite analogous to that of integrating partial

differential equations of the first order. We will now pro-

ceed to integrate some of the simpler forms of equations of

the second order.

3. To integrate the forms

^^ — ^^^ — (\ d
^^ _ ^^ _ A

dx^
~"

' d'lf'
~

' dxdy ~ dydx
~

The first of these equations, multiplied by dx, gives

— = 0, whose integral is -5- = ^y

;

which, multiplied by dx, gives

ds = (jjydx, whose integral is 2 = (pyx + i/jy = x<t>y + ^y
;

in which ^y and ^y represent arbitrary functions of y, which

are used instead of the arbitrary constants in common in-

tegrations.

By proceeding in like manner to integrate the second of

the proposed equations, we shall have

— =z (px and z = y<px + rpx,

the arbitrary functions being here functions of x.

To integrate the last of the proposed equations under the

form

= 0, we have -t-- = 0, and thence -^ = ^,dxdy ' dx ^ dx

whose integral gives 2 = / dx^ + ypy
;

and the integrals of the form , = 0, are

da r^ = ^ and z = J du<tyy + <px.
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It is manifest, that in this way we shall get

for -the integral of j-^ = P,

dx

and z = I yj Fdx + (py) dx + tfiy

is thence the integral of dz, and we have

^ = J y^ + J ^^y) dy + V'a'

for the second integral, resulting from t—̂ = ^
i
^^^ i^i ^i^s

manner we have
"

^ = J \^ + J P^'*) '^y + '^^

d^z
for the integral resulting from -j—r- = P ; noticing, that the

equations

(P, Q, E, &c., being functions of x and y), may be treated in

much the same way.

4. T-2 + P -7- = Q, in which P and Q are functions of

X and y, can also be easily integrated.

dz
For by putting -5- = it, the equation becomes

-5—r Vu = Q, or du + Fudx = Qdx,

a linear equation, yrhose integral is expressed by

u = e-A"^ (fQef^^'^dx + (py);
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dz
and since w = -7- , we thence readily get

s = fudx = (\e-f^'^dx (Jo.ef^^dx'^ + <py\ dx + i>y.

(See page 455.) It may be added, that the equation

dxdy dx '

by putting -^ — u, becomes

-5—t- P"!^ = Q, or du + Vvdy = Qfiiy\
dy

whose integral, as before, is

z = Jud^ = fle-f^^« (fQef^''^dy\ + (jix\ dx + i/)y.

In much the same way we can change

d^z r^dz r^ J.
cPs

, T3 /fs „
+ P -r- = Q mto -5—

J- + P T- = Q,
dxdy dy dydx dy

d'z _ 6^3 •

dxdy dydx

dz
(see p. 22) ; consequently, putting w = -7- we shall have the

ay

equation -5—h P-w = Q, or du -V Fudx = Qdx,

and thence

z = fudy = fle-f^"'' (fQef^'^'dx) + 4,y\ dy + i^x.

5. It is manifest, from the elimination off (ax + by) from

X =f(ax + by), at p. 26, which gives the equation

a^ -b— -
'

dy dx ~ '
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an equation of partial differential coefficients, that equations

of partial differential coefficients of the first order must re-

sult from the elimination of arbitrary functions from equa-

tions, in a way very analogous to that in which ordinary

differential equations result from the elimination of arbitrary

constants from equations.

Hence, it is clear that in finding the integrals of partial

differential equations, we ought analogically to add arbitrary

functions to correct the integrals, instead of using arbitrary

constants for that purpose ; noticing, that the forms of the

arbitrary functions must, in particular cases, be determined

from the nature of the question.

Thus, if we take the partial differential equation

adz hdz
^

dx dy ~
''

to find its integral, we may proceed as follows :

—

dz ds
Eepresenting -7- and -3- , as usual, by p and q, the pro-

posed equation becomes op + 5^' = 1 ; and since s is a

function of x and y, we also have

, dz , dz ^

Hence, by eliminating^ from the equations

ap + hq ^ \ and pdx + qdy = dz,

we get q (pdx — ady) =. dx — adz
;

which, on account of the arbitrariness of q, is equivalent to

hdx — ady = and dx — adz — 0;

or eliminating dx from the first of these equations by means

of the second, we have

dy — hdz = and dx — adz = 0,
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wLose integrals will cleavlj" be of the form

y — hs = A. and a; — aa = B

;

consequently, since tliese equations must clearly be coex-

istent, we must have A = 0B, or by substituting the values

of A and B, we shall have

2/ — Ss = <j>{x — as),

for the sought integral ; indeed, if (as at p. 26) we eliminate

the arbitrary fanction denoted by <^ from it, we shall get the

, ,. dz -, dz ^

proposed equation a -^—|- o -^ = 1

from it ; noticing, that from what is done at p. 211,

2/ — 5s = </>(» — as)

is plainly the general form of the equation of cylindrical

surfaces, in which the nature of the directrix is undeter-

mined. If, however, the equation of the directrix on the

plane a?, y, is of the known form y ^fx, then the nature

of the function ^ can easily be found.

• For by putting naught for z'uiy — bz ^ ^{x — az), it

becomes y = (px; consequently, since y =fx we have

^x =/x, which gives the form of 0, and of- course the equa-

tion y — hz = (j){x — az) will become of the known form

y — iz —f{x — az).

For further illustration, we will show how to find the

-, n dz dz
integral of ^ '^ + ^ = ^'^ + ^ = 0.

Since dz = pdx + qdy,

by substituting q = — px, from the. preceding equation, for

q in it, we shall get dz = p {dx — xdy)
;
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•which, on account o'' tlie arbitrariness of ^, gives

(fe = and xdy — cZa; = ;

or, multiplying by --„ , "^ - ^ = 0.

By taking the integrals of these differentials, we have

z = a and - = 5

;

X

consequently, since these integrals are coexistent, we must

have a = <^5 ; or, substituting the values of a and h, we shall

have s = (j)-, which, if we please, may be written in the

ft

form 4>^'^z = -; which belongs to what are called conoidal

surfaces, whose right directrix coincides with the axis of s,

without reference to the nature of its curvilinear directrix.

If the curvilinear directrix is given, together with the

position of the axis of the conoid, then, putting s = u, we

shall, from the equations of the curve of double curvature,

which represent the curvilinear directrix and the axis, find

X, y, and a, in terms of u ; consequently, having found x

and y in terms of s, we shall get - in a function of s, and

shall thence get <^~^3 in a known form, which will give <{> in

z = <p -, as required.

Again, resuming s = ax + <l>y, from p. 583, which is the

dz
integral of the partial differential equation — = a ; then, it

is plain that there is nothing in the nature of the question

to determine the form of the function denoted by <j) in (py,

so that by putting a; = we have s ^= (j>y for the equation
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of the section of the proposed curve surface, by the plane

s, y, between x, y, and s, of an entirely undetermined form.

It is also clear from s = «» + ^y, that the surface, when

cut by planes parallel to that of the axes of x and s, always

gives right lines which are parallel to each other, since a de-

notes the tangent of the angle which each of the lines of

section makes with the axis of x.

6. It is manifest from what has been done, that the inte-

gral of a partial differential equation of the second order be-

tween a;, y, and s, must involve two arbitrary functions,

through which the surface represented by the integral must

pass.

Thus (at p. 592), we have found s = x^y + ypy for the in-

cPz
tegral of -^ = 0, in which y and '4>y are the arbitrary

functions.

If we put a; = 0, the equation z = x^ + i/»y beodmes

s := i/iy, which represents the section of the curve surface

by the plane of the axas s and y.

Since the axes of the co-ordinates are supposed to be rect-

angular, it is clear that <j>y represents the tangent of the

angle which the line of common section of the surface by a

plane parallel to the axes of x and s makes with the axis

of a;.

Hence, if a line is drawn in the plane of the section

through the point where it cuts the curve z = tpy, supposed

to be drawn, at will, to make an angle with the axis of x,

having (py equal to its (natural) tangent, the line thus drawn

will represent the common section of the plane and the sur-

face whose equation is s = X(py + ^y, and thence we may

readily perceive how the curve surface may be supposed to

be described geometrically.
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7. It may be added, in. concluding this treatise, that the

integral of a differential equation containing any number of

variables, whether they are total or partial, may clearly be

found by Maclaurin's theorem, as explained in {/>') given at

p. 25.

8. Sometimes the generating function of the integral thus

found Can be obtained, and -thence the integral will be €x-

pressed in finite terms.

Thus, if we have

„ ds d}z a? d^z a? .

^ = ^ + ^^ + ^^ O + ^ 17273 +' ^''

in which s is expressed in terms of x, supposing it to be a func-

tion of X and y regarded as being independent variables, and

dz d^3 . J i u ^u 1 r. dz d^z .

s, J- , j-j , &c., are supposed to be the values oi s, t- i t-» , &c.,
OiX CtX (XX QjXi

when X is put equal to naught in them ; noticing, that if

ce = makes any of the quantities s, -z-
, ^-j, &c., infinite,

then, by putting x + u for », we may proceed, as before, to

find the expansion according to the ascending powers of x.

It is hence clear that the preceding series may be regarded

as an integral of a partial differential equation between x

and s, in which x and y (or, indeed, any. number of varia-

bles) are independent variables, and s is a function of them,

or depends on them.

If the preceding series has been obtained from a partial

differential coefficient of the first order, it is clear that z will

represent an arbiti-ary function of the variables supposed

constant in the differential coefiicient, and if the series has

been obtained from a differential coefficient of the second

dz
order, it is plain that z and -j- will each be arbitrary fane-
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tions of the variables supposed to be constant in the differ-

ential coefficient, and so on, to any extent that may be re-

quired.

d?-z cPz
9. If we take -y-j = c'' ^^i it is manifest that we may

find s in a series after >he following manner.

Thus, by 1»,king the successive differential coefficients, we

da? ~ difdx
~~

dxdy^ ~ dy^

A ^^ —. A ^*^ — "
dee' _ id*2

^"^"^ d^-'^d^'~'^~d^ -'^
d^'

smce
d^ _ ^^
cfoj' dif

'

and so on, to any extent.

Hence, using ^y to represent the value of s that corre-

sponds to iB= 0, T-j corresponding will be expressed by 0"y,
dy

dz
and using ^jry to stand for the corresponding value of -j- , and

so on, it is manifest that, from the substitution of the pre-

ceding values in the series, we shall get

z = <tyy + ^y\ + d'<P"y^ + <^i>"yj^ + c'<P"y jj^ +

for the integral, or the required expansion.
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If in this series we put ipy + ipy for
<f>y,

and c {<p'y — tp'y)

for ipy, it will be reduced to

'
s = ^y + y ^'y + 172 ^ ^ "^ 1"23 ''^ ^ + &C- +

('05 G'^lu
^3™3

= <>{y Jr ex) + -^{y — ox),

wHcli expresses the integral of the proposed partial diflfer-

6ntial equation of the second order, which is the well-known

formula for vibrating chords. (See Lacroix, vol. iL, p. 639,

and Monge, " Application de I'Analjse a la Greometne,"

p. 415.)

To find the total integral of 3 we rnay put s, Z, -y- , -j-^ , &c.,

„ Y .^. (dX\ (dPX\ . dz cPz d}3 . ,

^°^ (^) ' {^) ' (?) '
^'^" """^ '' °°' ^" (^'^ "* P- 2^

'

noticing, that we may put x + a, y + b, &c., for a?, y, &c.,

and that in this way the integral with reference to all the

independent variables, or any number of them, can be

found at wHL
2fi
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To complete tlie work, we add the following important

articles :

—

I.

To wliat are often called tbe singular points of curves, we

add the following from Todhunter's " Treatise on the Differ-

ential Calculus." (See p. 325, &c., of that work.)

1. Points d'arret are those points of a curve at which a

single branch of it suddenly stops.

Thus, y = X log X — log X -.—
SO

gives y=:---=- _ = 1-H-
cfe _ dx .1
X ' a? ~ ' X ~ '

which shows that y = when x — 0, or the curve stops

when x — 0, which is hence a point d'arret; but if a; is

negative, then, since log x is impossible, it follows that y

must be impossible. For the first part of what has been done,

see p. 57.

2. A point saillant is a point at which two branches of a

curve meet and stop, without having a common tangent

Thus, let y = j , which gives

1 + <

di _ 1 ^
dx~ ^- L -V

1 + e' x[l +, e')

in which e denotes the base of hyperbolic logarithms.
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If X is ualimitedly small, then y in the proposed equation

is unlimitedly small also, for two reasons : first, on account

of the smallness of x ; and second, on account of the unlim-

1 . .
-

itedly great value of - in the denominator 1 + e^ ; and it is

clear that the curve touches the axis of x at the origin of

the co-ordinates, where y-= 0. Again, if x is negative, it is

easy to see that x unlimitedly small gives y unlimitedly

small at the origin of the co-ordinates, or where x =: 0; and

it is also clear that when a? = 0, we shall reduce -— to

1 + e "^
.

1 + ex

so that -— is the tangent of an are of 45° : and of course the
ax °

second branch of the curve lies on the negative side of the

axis of X, and makes an angle with x negative of 45°, or half

a right angle, and intersects the preceding branch of the

curve at the origin of the co-ordinates, making an angle of

135° with it.

3. If a curve has an infinite number of conjugate points,

that series of points is called a branohe pointillee. Thus, if

2/^ = a; sin^ x, or y = sin x \/x, then, if » = s in any in-

tegral multiple of tt, we shall, for all such points, have y = 0,

as required.

Remarks.—Since these points do not have place in al-

gebraic curves, yet, since they may sometimes occur in tran-

scendental curves, we have deemed it right to give an account

of them.

II.

We here propose to investigate the path that ought to be

described by a boat in crossing a river of given breadth,
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from a given point on one side to a given point on tlie other,

so as to make the passage in the least time possible ; sup-

posing the simple velocity of the boat by the propelling

power to be given, and that the velocity of the current, being

in the same direction with the parallel sides of the river, is

variable, and expressed by any given function of the perpeu'

dicular distance from that side of the river from which the

boat sets out.

It is manifest that the boat, by the propelling power alone,

will describe a certain line, either straight or curved, passing

from her point of departure to the other side of the river,

which is such that the current will float her down the river

into another curve, which is formed by the composition of

the velocity of the boat in the direction of the first curve

and of the velocity of the current, and that the curve thus

described, from the point of departure to the point of arrival,

will be described in the same time that the propelling power

alone would cause her to describe the first curve mentioned,

which time, by the question, is to be a, ininimum.

Let then y, y', denote corresponding ordinates of the two

curves {y belonging to the fii-st curve), having x for their

common abscissa, the origin of the co-ordinates being at the

point of departure, the perpendicular width of the river being

the line of the abscissas, and its side the line of the ordinates.

Let V denote the given velocity of the propelling power,

and t the time elapsed from the instant of departure ; also,

let (px vary as the velocity of the current at the distance z\

and let a(px, a being a constant, and for simplicity put

a^x = x'. Now, we have

Vditi" + dy- =: Ydt, :. df = VW - ds^,

also dy' — dy = x'dt for dy' — dy



A

APPENDIX. 605

manifestly denotes the infinitely small distance through

which the current floats the boat in the time dt,

:. dt/ = {x'dt - dyj - a!'W- ^x'dtdy' +dy"' = Y^f-

since dy"^ = VW — da?,

1 , ,^ 2x'du' ,^ dx^+ dy'^
and thence df + ^jt^—'^, dt = -==; ^

.

V^ — x^ V - — x^

Solving this quadratic, we have

-7. _ ^y'dy" + (V^ - x'^) di- - x'dy'

di/
which, by putting -s- = p, taking the integral, &c., gives

which, is to be taken from' the given time of departure to

the given point of arrival. Since < is to be a minimum, its

equal j (fo
^ Y^ - r^'^'

^j

must be a minimum also.

Since, by regarding dx as being constant (because x' is a

function of x only), we must, in taking the variations, con-

sider as' as being constant, and take the variations by regard-

ing j? only as variable ; which gives

V'^n T^-x'-^ )

^ r dxdp / Y'p ^
J T'- x" \(jy + T'- sb'^)*

'

_ rj¥_ (
^'p _ A

J Y'- x" \i/Yy + Y'- x" I
'
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since dxdp = Sdy' = A6x/,

by the principles of the Calculus of Variations. Integrating

by parts, we have

(
^'P A =

by the nature of maxima and minima. In which 0' and ^
correspond to the first and last points of the curve, which

being given, Sy'" and 6y", their multipliers, must be equal

to naught ; and of course the preceding integral is reduced

to - fdy'd („,
^ „) ( —^ - x') = 0,

which clearly can not be satisfied, so as to leave Sy' arbitrary,

except by putting its factor equal to naught, which gives

d 1^1^ ^p -A\ = o,— x'^ WV2„3 . -ya _ 3/2 /.J
'

whose integral gives

—^ X —

by using = for the arbitraiy constant.

This equation is clearly equivalent to the form

CVy- C2!' VYy + V^-a?" = (Y'-a!'0 VYy + V^- a;",

or we shall have

CV^ = (V» + Ca)' - aj'=) VYy + V^ - n/^,

or (7Vy = (V^ + Qx' - a/J (jy + V^ - x-''^,

which gives
'
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or we have

V dy' _ (V^ + Qx' - x") VY^
dx [GW - (V' + Ox' - x'J ]*

'

wliose integral will give tlie curve described by the. pro-

pelling power and the action of the water upon the boat

during its motion.

dy' .

To make ~- in the preceding question real, the expression

in its denominator positive, so that the square root can be

taken, and thence give a real result.

If we omit the terms in the same expression that contain

x' and its powers, and put -^ for -—-, we shall, by a simple

reduction, get -^ = , for the line described by
° dx 4/C" _ 1

propelling power alone, from which the current may be sup

posed to float the boat down into the actual curve described,

has the preceding for its differential equation. Because V
and C are invariable, it is clear that the integral of the pre

Yx
ceding equation is 3/ = — ,

which needs no correction,

supposing the origin of the co-ordinates to be at the place of

departure of the boat
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Hence, the propelling power alone causes the boat to

describe a right line passing through the given place of

departure. To get C, we must obtain the integral of the

preceding equation, in which, by putting for y' its value at

the given point of arrivat, noticing that the correction may

clearly be supposed to equal naught, we shall have an

equation whose only unknown quantity will be C, which

solved gives C ; and thence, by taking those values that are

not less than 1, the first and last points of the right line

described by the propelling power alone become known,

and thence the direction or directions, according as C has

one or more values, will be found, and the problem solved,

as required.

Eemarks.—The question here solved was proposed in

No. 2 of the "Mathematical Diary," in the year 1825, by

its much accomplished editor and profound mathematician,

Bobert Adrain, LL. D., then professor of mathematics in

Columbia College, New York. I communicated a solution

to the question in No. 3 of the same work, which received

the prize awarded the solution by the editor. Since there

were many mistakes in the published solution, I have con-

cluded, at the earnest solicitation of a former pupil and a

much accomplished scientific gentleman, to insert the correct

solution of the question in this work.

III.

To illustrate what has been done, suppose the bpdy A
moves uniformly around the circumference of the circle

LKI with a velocity represented by 1, or unity, while the

body B, in pursuit of A, moves continually directly toward

A in the curve BB'B" with the uniform velocity la ; then
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it is proposed to show how to find the nature of the curve

described by B, or of the curve of pursuit.

Let AA' and BB' be very small parts of the curves

described by A and B in the same time, and they will

clearly have the ratio 1 : m. Let be the center of the

circle connected with the extremities of the arc AA' by

n-o

the radii AO, A'O, at whose extremities the tangents A«,

and A.'a" are drawn, crossing each other in C ; then it is

evident we shall have the angle aC'A', made by the tangents,

equal to the angle A'OA, subtended by the arc at the center

of the circle. Now the angle

aAB = </) = Aa'5 + A'5A,

AB and A'B' being the corresponding tangents of the

curve of pursuit which intersect in b, and thence we have

A'&A = aAB — Aa'h = <l>
— Aa'b

= <j>- (CA'5 - A'Ga') = - d<l> + AOA'

by the nature of a differential, since the angle a"A'B' (sup-

posed to decrease) is successive to aAB = ^. Putting

AO — r and the arc AA' = dx, we have

A'lA = -d<t> + —]
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and thence,' from the triangle,

A'hA sin (~ - d<p^ =

d(p : dx :: sin AA'5 or ^ (ultimately) : Ab = t,

which gives — dx — td(l> = sin <t>dx.

Drawing Ae perpendicular to A'b, we have A'e = cos (pdx,

and ultimately eb = Ab, or eB'B = A5B ; and thence

— dt = B'B — A'e = — cos <l>dx + mdx,

which gives dx = .

7/1 — cos
(l>

From the substitution of the value of dx, the preceding

equation reduces to

'- {m — cos (p) — tdf = — sin <j>dt -^ {m — cos ip),

or tdt = 7' [c? (sin </>, ^ — »«<cZ0].

To integrate this equation, we may clearly assiime

t = A(j> + B0« + C^^' +, &c.,

which gives

2

= AV^,^ + iAB p'dp + 3 (2AC + B^') 0^cf</> +, &c.
;

also from
*3

Sin ^ := ^ - _- + j-g-g^-g -, &c.,

we easily get d (sin <^, i) =

2A:^dp+ (- I
A+4B) <p'd4> + (f^

-
I + C) 6^»rf0 +, &C.,

and — mtd<p — — mA<bd(p — mB^'J</>— mG^dtp — , &c. ^
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Hence, from sabstitution aud omitting tTie factor d<t),. the

equatiou tdt = r [d (sin <p, t) — mtd(t>]

becomes the identical equation.

A> + 4ABf' + 3 (2AC + B=) (/>= + &c. =

(2A— mA) r(p_+ (—- A + 4B — mB\ r<i>' +

(^ - B + 60 - «iC) x<t>' +, &c.

;

which, by equating the coefficients of like powers of d), gives

A = (2-m)/-, 4AB = (- |A+.4:B-wB)r,

or (4 - Zm) B = — | A,
o

which gives B = -|(|-£:£-).,

and 3 (2AC + B=) =, (^ - B + 60 - mCW

;

or we have

6A0 - 60/- + mCr :=. /A _ b) r - 3B^

_ (2-m) (52 -QnC)
- 60 (4 - 3m) '

or (b 5«)0_ 60 (4 -3m) "^ 3(4-37/1)^"^

_ (2-wz) (4- 3m) (52 - 9m) - 80 (2-ct)^

~
60(4-3m)-^

''

which gives

_ (2 - m) (4 - 3m) (52 - 9m) - 80 (2 - mY
60 (4 - 3w)^ (6 - 5m)

^'

and so on. Hence,
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((-'")*-i(|^„)*' +

(2 - m) i - 3m) (52 - 9m) -80(2-my ., , .\^
60 (4 - 3mf (6 - 5mj ^ + *°-|

"^

is the integral, C being the constant ; and if T = C is the

value of t at the origin, when
<t>
— ^', we shall clearly have

T +

(2 - m) (4- 3m) (52 - 9m) - 80 (2- mf
60 (4 -3m)= (6 -5m) (^ - .^ ) + &c.

for the correct integral.

To find X, we take the equation dx

from the value oft, we get the form

dt

m — cos I

; then,

— dt = - [A(*/. + 3B (<A - ^')'# + 50 (0 - 0')*^ H- &0-] ;

consequently, siace

cos 0=1 — <P' + f'

1.2 ' 1.2.3.4

by putting m — 1 = m', we get

-, &c.,

dx=-\—d^ + —-~— (,/,
- ^Jd,j> +

[m' 2m"^

(m+6) A — 36m'B + 120?n=C

2im'^

whose integral gives

(0 — (j>'yd<l> + &c.\r,

X = — '^(*-*') + 5=5^»-«- +
im- -

•
' 6m'2

(?/i' + 6) A - ,36m'B + UOm'^G
{<t> + <l>7 + &c.j r,

120m'^

which needs no correction, supposing it commences with
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<p = (j>\ or to equal naught at the origin of the motion. If

in this value of x we put

A = .-», B=-|(l5£),....

as in t, we shall get the required value of x.

By taking (j) ^^ <)>' sufficiently small, we can, from the for-

mulas found, find the corresponding values of t and x ; and

then, changing into <p\ and putting (ji—
<t>' for a new value

of — (p', we may calculate the corresponding values of t

and X as before, and so on, to any required extent ; conse-

quently, in this way we may find any number of points in

the required curve of pursuit.

Remabk.—This example is given to illustrate the method

of integration given by the series in Remark 1, at p. 555.

On account of the complication of the preceding process,

we will insert a more simple jnethod by linear description.

Thus, let A start from the position 1 in the circumference

of the circle, while B starts from within the circle, and

let the bodies move uniformly over the distances 1, 2 ; 2, 3
;
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3, 4, &c., and over tlie distances 0, 1 ; 1, 2 ; 2, 3, &c., sucli,

that the first distances being each represented by 1, the

second distances (01, &c.) shall each be represented by m.

Then will the curve described by B, the pursuing body, be

represented by the rectilineal figure 0, 1, 2, 3, &c., nearly,

and thence the curve of pursuit can be approximately found

;

and it is evident that the figure canbe described in a slightly

different manner, which sensibly gives the same result as

before.

IV.

Having procured the last work on Quaternions by the

late Sir William Rowan Hamilton, LL.D., M.R. I.A., &c.

published in 1866, since the much lamented death of the

gifted author, by his son William Edwin Hamilton, and

having given much time to the study of the work, we here

propose to notice some parts of the work that are somewhat

analogous to what has been done in the preceding treatise.

To the end in view, we shall refer to what is done by the

author at p. 2 15 of his treatise, as follows

:

(1.) From a point A of a sphere with for center, let it be

required to draw a chord AP, which shall be parallel to a

given line OB, or more fully, to assign tJie vector, p = OP,

of the extremity of the chord so drawn, as a fanetion of

the two given, vectors, a = OA and (3 = OB ; or rather, of

a and UB, since it is evident that the length of the line /3

can not affect the result of the construction, which the figure

may serve to illustrate.

(,2.) Since AP
|i
OB or Q — a\ [3, we may begin by

writing the expression

pz=a + xP (1),
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which may be considered as a form of the equcutimi of the

right line AP, and in which it remains to determine the

scalar coefficient a?, so as to satisfy the equation of the sphere

Tp = Tffi (2).

In short, we are to seek to satisfy Jhe equation

T (a + «j3) = Ta

by some scalar x which shall be in general different from

zero, and then to substitute this scalar in the expression

p = a + ,t/3, in order to determine the required vector -.

(3.) For this purpose, an obvious process is, after dividing

bjs T/?, to square, and to employ the formula 210, XXL,
which had indeed occurred before, as 200, VIII., but not

then as a consequence of the distributive property of multi-

plication. In this way we get

/Ta\ /To V 2a , .

Km =te + '')' °' J«' + «'- = 0.

which is satisfied either by
„ 2a

a; = 0, or -r- + » = 0,

2a
which gives a; = -^ . Substituting this value for oa in
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tte equation p — a + I3x, we have p = a — 2a = — a, on

account of the negative sign ; consequently, AP is clearly

parallel to OB as required, or, as in Hamilton,

and the figure OCAD is a parallelogram.

Instead of this process, we raise the members of the equa-

tion - = 33 + ^ to the integral power n, and retain only

those terms that involve the first power of /3, and thence, on

account of the indefiniteaess of p, we get

= 3!" + nx"-^ g,

which gives a? = — -r- ; consequently, from p = a + a^jS, we

have p = — (n — 1) a, which, for n = 2, gives p = — a, as

before. It is evident that we may in like manner take

n = 3, 4, 5, &c., and thence draw any number of parallels to

OB, which will not, however, pass through the point A

;

and it is evident that, in like manner, a parallel to OB may

be drawn through E, as in the figure. Thus a sphere, havi;ig

its center at and radius OE, cuts PT produced toward

P', so that its arc between E and where it meets OP' pro-

duced will be bisected by OB ; and of course the right line

EP°P', joining E, and where OP produced meets the sphere,

must be parallel to OB.

Remabks.—^It is clear that the preceding method of treat-

ing the problem will be found useful in all analogous cases.

"We will add that Hamilton represents a quaternion in its

most general form hj q = (>> + ix + j>j + /cs, in which the

term w, and the multipliers a;, y, ^, are called scalars,
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{? — f =^ W = ijk = — 1,

'/, _;', k, being so taken that they shall represent a system of

three right versors in three rectangular planes, as described

by Hamilton at p. 157, Art. 181 ; and for the method of

using these versors in practice we shall refer to p. 366, &c.,

of Hamilton, where he. will find some well-known formulas

of spherical trigonometry.

Finally, we would advise the student to make himself

familiar with Hamilton's definitions ; to read with care the

parts of the work to which reference has been made. Be-

sides he will also do well to read from p. 208, Art. 210, con-

tinuously to p. 240, Chapter II. Indeed, whoever will

give his attention to obtain a thorough knowledge of the

work, will find his labor abundantly rewarded.

THE END.
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